

BURO HAPPOLD

North Lincolnshire Green Energy Park

Indicative Drainage Strategy

0046658-DS-REP-01

0046658

17 February 2023

Revision P1

Contents

C	onten	ts	ı
1	Intro	duction	1
	1.1	Background	1
	1.2	Project Description	1
2	Site (Context: Statutory & Non-Statutory Policies and Guidance	4
3	Site I	Description	5
	3.1	Existing Site	5
	3.2	Existing Topography	6
	3.3	Existing Waterbodies	8
	3.4	Existing Drainage	8
4	Prop	osed Surface Water Drainage Strategy	16
	4.1	General	16
	4.2	Surface Water Disposal	16
	4.3	Watershed	17
	4.4	Consultation	17
	4.5	Sustainable Drainage Systems (SuDS)	17
	4.6	Climate Change	22
	4.7	Pollution Control	23
	4.8	Proposed Strategy	25
	4.9	Diverted Ditch	32
	4.10	Designing for Exceedance	35
	4.11	Easements	37
	4.12	Maintenance	37
5	Prop	osed Foul Water Drainage Strategy	38

5.1	General	38
5.2	Severn Trent Consultation	38
5.3	Proposed Strategy	38
Table (of Tables	
Table 3	3-1: Ditch properties.	10
Table 3	3-2 Existing ditches capacity check	15
Table 4	4-1 SuDS Techniques.	18
	4-2-Peak rainfall intensity allowance in small and urban catchments 961 to 1990 baseline).	(based 22
Table 4	4-3 Mitigation indices of proposed SuDS components.	23
Table 4	4-4 Pollution hazard indices of areas within the Application Land.	23
Table 4	4-5: Areas and allowed discharge for each catchment.	26
Table 4	4-6: Percentage Impermeable proportion assumptions.	26
Table 4	4-7: Summary of SuDS storage designs.	27
Table 4	4-8 Maintenance and ownership	37
	of Figures	2
•	1-1 – the Project Location.	3
•	3-1 Existing Topography.	7
	3-2: Plan of existing ditches on the Energy Park Land.	9
_	3-3: Existing Ditches	14
-	4-1 Example Detention Basin.	21
Figure	4-2 Example Swale.	22
Figure	4-3: Catchment Plan.	28
Figure	4-4: Proposed SuDS Features.	29
Figure	4-5: Image of ditch to be diverted.	33
Figure	4-6: Proposed ditch diversion route.	34
Figure	4-7: Exceedance Flow Routes.	36

1 Introduction

1.1 Background

- 1.1.1 This report has been prepared by Buro Happold on behalf of The North Lincolnshire Green Energy Park Ltd. ('the Applicant'). Identified as a Nationally Significant Infrastructure Project (NSIP), the North Lincolnshire Green Energy Park (NLGEP) ('the Project') is being brought forward for planning under a Development Consent Order (DCO).
- 1.1.2 This drainage strategy should be read as supplementary information to the Flood Risk Assessment (**Document Reference 6.3.3**) for the Project.

1.2 Project Description

- 1.2.1 The North Lincolnshire Green Energy Park (NLGEP) ('the Project'), located at Flixborough, North Lincolnshire, is a Nationally Significant Infrastructure Project (NSIP) with an Energy Recovery Facility (ERF) capable of converting up to 760,000 tonnes of non-recyclable waste into 95 MW of electricity at its heart and a carbon capture, utilisation and storage (CCUS) facility which will treat the excess gasses released from the ERF to remove and store carbon dioxide (CO₂) prior to emission into the atmosphere.
- 1.2.2 The NSIP incorporates a switchyard, to ensure that the power created can be exported to the National Grid or to local businesses, and a water treatment facility, to take water from the mains supply or recycled process water to remove impurities and make it suitable for use in the boilers, the CCUS facility, concrete block manufacture, hydrogen production and the maintenance of the water levels in the wetland area.
- 1.2.3 The Project will include the following Associated Development to support the operation of the NSIP:
 - a bottom ash and flue gas residue handling and treatment facility (RHTF)
 - a concrete block manufacturing facility (CBMF)
 - a plastic recycling facility (PRF)
 - a hydrogen production and storage facility
 - an electric vehicle (EV) and hydrogen (H2) refuelling station
 - battery storage
 - a hydrogen and natural gas above ground installations (AGI)
 - a new access road and parking
 - a gatehouse and visitor centre with elevated walkway

- railway reinstatement works including, sidings at Dragonby, reinstatement and safety improvements to the 6km private railway spur, and the construction of a new railhead with sidings south of Flixborough Wharf
- a northern and southern district heating and private wire network (DHPWN)
- habitat creation, landscaping and ecological mitigation, including green infrastructure and 65 acre wetland area
- new public rights of way and cycle ways including footbridges
- Sustainable Drainage Systems (SuDS) and flood defence; and
- utility constructions and diversions.
- 1.2.4 Refer to Appendix B for a figure showing an overview of the Project.
- 1.2.5 The Project will also include development in connection with the above works such as security gates, fencing, boundary treatment, lighting, hard and soft landscaping, surface and foul water treatment and drainage systems and CCTV.
- 1.2.6 The Project also includes temporary facilities required during the course of construction, including site establishment and preparation works, temporary construction laydown areas, contractor facilities, materials and plant storage, generators, concrete batching facilities, vehicle and cycle parking facilities, offices, staff welfare facilities, security fencing and gates, external lighting, roadways and haul routes, wheel wash facilities, and signage.
- 1.2.7 The Application land encompasses an area within and adjacent to Flixborough Port (RMS Trent Ports) on the east bank of the River Trent. The Flixborough Port and Flixborough Industrial Estate together form an industrial complex that has supported a range of businesses and industrial activities since the early 1900s. Existing infrastructure at the site includes roads, a rail spur, a 155m long wharf, weigh bridge, cranes, warehousing and stock sheds, workshops and portable offices.
- 1.2.8 The Project will have transport connectivity by road, rail, and river to sea via the River Trent and River Humber, with the latter two used for freight transport only. Land adjacent to the Flixborough Industrial Estate included within the Application Land is currently a mix of both brownfield land and areas used for arable agriculture, comprising a number of fields separated by hedgerows and well established drainage ditches which are maintained by the internal drainage board.
- 1.2.9 The Order Limits and indicative location of the proposed Energy Park buildings are shown on Figure 1-1.

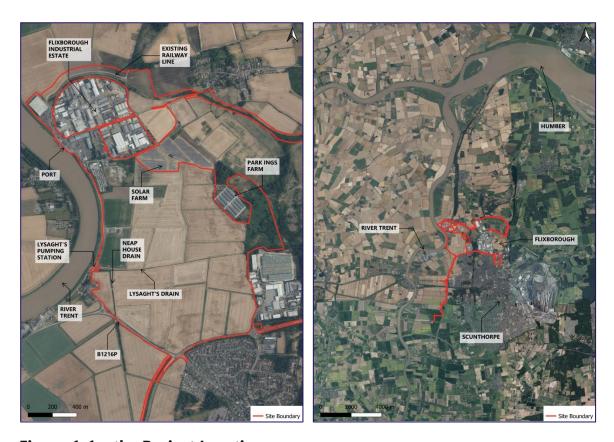


Figure 1-1 – the Project Location.

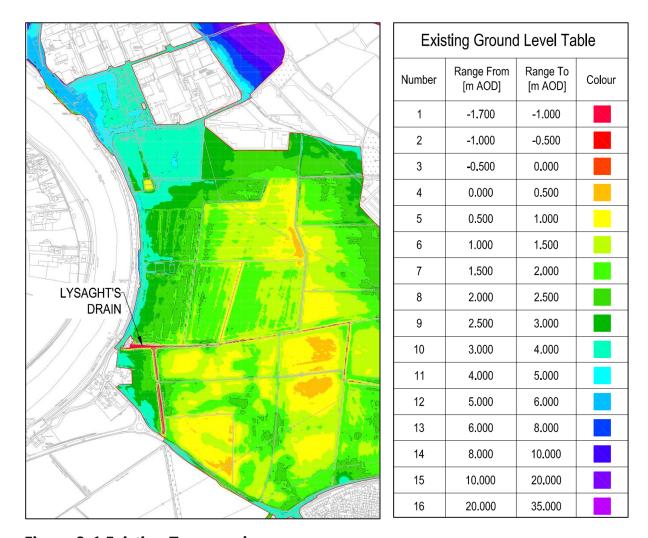
2 Site Context: Statutory & Non-Statutory Policies and Guidance

National Policy

- 2.1.1 The National Planning Policy Framework (NPPF 2021) provides planning policy from central government. The document states that "...local planning authorities should ensure flood risk is not increased elsewhere and only consider development appropriate in areas at risk of flooding where, informed by a site-specific flood risk assessment...".
- 2.1.2 Non-Statutory Technical Standards for Sustainable Drainage Systems (TSSuDS) (Department for Environment, Food and Rural Affairs, March 2015) provides guidance for the hydraulic performance of Sustainable Drainage Systems (SuDS) systems to reduce flood risk and improve water quality of water discharging from a development site. The document provides guidance on best practice and is not a statutory requirement for approval.

Planning Policy

2.1.3 In accordance with the North Lincolnshire Local Development Framework consideration of sustainable drainage systems and surface water attenuation methodologies are required. The SuDS and Flood Risk Guidance Document (April 2017) describes the requirements that must be met by the developers to avoid increasing the risk of flooding to the site and the surrounding areas.


3 Site Description

3.1 Existing Site

- 3.1.1 The existing site primarily comprises of five main areas, they include:
 - The port area and adjacent steel sheds.
 - Agricultural fields between Stather Road, Phoenix Parkway and Ferry Road West.
 - The disused railway line between Flixborough Port and Drangonby Sidings.
 - Highway link between Phoenix Parkway and Scunthorpe, for district heating and and private wire network (DHPWN) installation only.
 - Highway link between Phoenix Parkway and Lincolnshire lakes scheme, along A1077 and M181, for DHPWN installation.

3.2 Existing Topography

- 3.2.1 Levels across the Energy Park Land containing the core elements of the project (ERF; carbon capture, utilisation and storage facility; bottom ash and flue gas residue handling and treatment facility; concrete block manufacturing facility; plastic recycling facility; hydrogen production and storage facility; electric vehicle (EV) and hydrogen (H2) refuelling station; battery storage and hydrogen and natural gas above ground installations), between Stather Road and Ferry Road West, vary from approximately +5.5 m AOD at the north-eastern corner, to +0.3 m AOD at the southern boundary.
- 3.2.2 Lysaght's Drain provides the lowest point of the Application Land at approximately -1.7 m AOD at the western end where it connects to a pumping station adjacent to the River Trent.
- 3.2.3 Levels to the east of Flixborough Industrial Estate vary from approximately +34 m AOD, in the north-eastern corner, to +4.5 m AOD in the area where the unknown road and Stather Road meets to the west of where the proposed AGI will be located.

Figure 3-1 Existing Topography.

- 3.2.4 The average elevation across the whole Application Land is approximately +2.3 m AOD.
- 3.2.5 Due to the Application Land's large area 10 different catchment areas are identified for the drainage strategy.

3.3 Existing Waterbodies

3.3.1 The River Trent runs adjacent to the western edge of the Application Land and will ultimately be the receiving body for the surface water discharge. There are a number of existing ditches across the Application Land, explained in the following section, and these will be used to convey surface water to the River Trent.

3.4 Existing Drainage

- 3.4.1 Existing drainage across the agricultural areas of the Application Land predominantly consists of land drains. Stather Road drains to either the existing agricultural fields or to adjacent ditches along its length. Whereas a piped drainage system exists within the Flixborough Industrial Estate.
- 3.4.2 The agricultural ditches eventually drain to Lysaght's Drain, which runs east-west through the centre of the Energy Park Land and in turn discharges to the River Trent, via a pumping Station.
- 3.4.3 The existing ditches are shown on plan in Figure 3-2, where the main ditches are numbered for reference. Table 3-1 summarises the length, top width, and flow direction of each ditch. Majority of the ditches have similar cross-sections, however, ditch 4 and 5 has a sheet pile wall on the southern side seen in Figure 3-3.

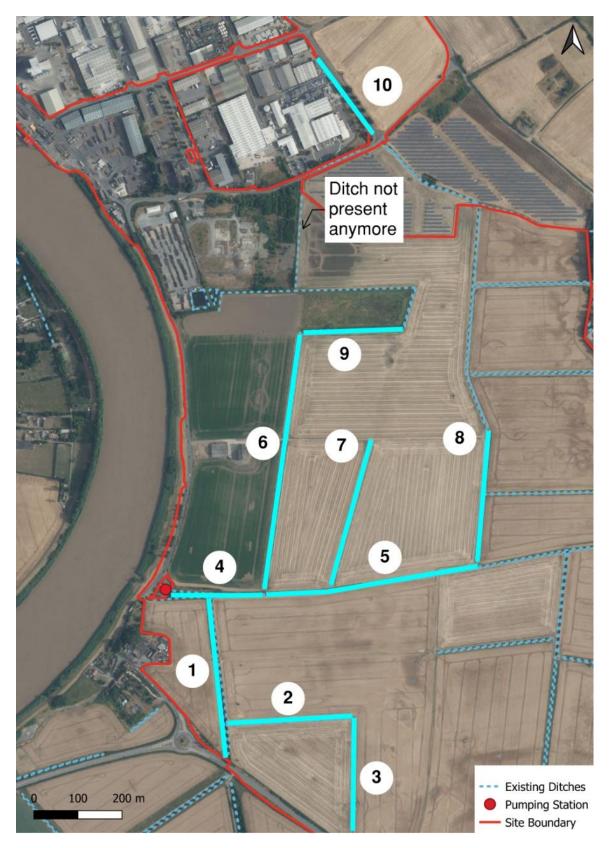



Figure 3-2: Plan of existing ditches on the Energy Park Land.

Table 3-1: Ditch properties.

Ditch Number	Length (m)	Top Width (m)	Flow Direction
1	348	15.5	S-N
2	278	5.0	E-W
3	282	5.0	S-N
4	222	35.0	E-W
5	692	6.0-7.7	E-W
6	590	5.0	N-S
7	340	6.0	N-S
8	298	5.0	N-S
9	230	4.0	E-W
10	208	2.0	N-S

Ditch 4 (Lysaght's Drain)

Ditch 5 (Lysaght's Drain)

Ditch 6

Ditch 7

Ditch 8

Ditch 9

Ditch 10

Figure 3-3: Existing Ditches

- 3.4.4 In order to prove that the existing ditches can accommodate the proposed flows, an estimated capacity check has been undertaken and the following assumptions have been made:
 - Geometry of the ditches have been determined from a walk over dated April 2021.
 - Longitudinal slope to be 1:1000
 - Side slopes to be 1:1 except ditch 10 which is 1:2.
 - Manning's n to be 0.035.

Using the Manning formula: $V = \frac{1}{n} R_h^{2/3} S^{1/2}$, the estimated existing capacity of the ditches are shown in Table 3-2:

Table 3-2 Existing ditches capacity check

Ditch Number	Height (m)	Base Width (m)	Velocity (m/s)	Capacity (I/s)
1	6.00	3.0	1.75	94,695
2	2.25	0.5	0.84	5,217
3	2.25	0.5	0.84	5,217
4	8.00	19.0	2.71	584,927
5	2.25	2.5	1.02	10,939
6	2.20	0.6	0.84	5,199
7	2.75	0.5	0.95	8,498
8	2.00	1.0	0.84	5,058
9	2.00	0.5	0.79	3,932
10	0.50	0.5	0.37	185

3.4.5 Looking at the proposed discharge rates shown on Table 4-5, it can be determined that the existing ditches have enough capacity to accommodate the proposed flows.

4 Proposed Surface Water Drainage Strategy

4.1 General

- 4.1.1 The surface water strategy and report have been developed in consultation with North Lincolnshire Council Lead Local Flood Authority and Scunthorpe & Gainsborough WMB.
- 4.1.2 This drainage strategy should be read as supplementary information to the Flood Risk Assessment (**Document Reference 6.3.3**) for the Project.

4.2 Surface Water Disposal

- 4.2.1 Surface water disposal should be in accordance with the drainage hierarchy in Building Regulations Part H 2015. This hierarchy is briefly described below:
 - Step 1. Disposal on Site via infiltration SuDS (Sustainable Drainage Systems)
 Infiltration tests are planned to be completed as part of a geotechnical investigation. A desktop study has indicated that potential for infiltration is low and has been considered as zero in the current calculations. The rates will be confirmed by investigation and the design updated as required.
 - Step 2. Disposal to a Watercourse

The nearest watercourses are the existing ditches across the Application Land, including Lysaght's Drain, which runs east-west across the agricultural fields between Stather Road and Ferry Road West. Lysaght's drain discharges into the River Trent via a pumping station located adjacent to Stather Road. The strategy for surface water will be to discharge to the existing ditches across the Application Land.

Step 3. Disposal to a Public Sewer
 Not required for this development.

4.3 Watershed

- 4.3.1 As noted in Section 3.2, the Application Land is divided into 10 catchments. The land is generally flat but stormwater from the north-western and south-eastern boundaries slope towards ditches that connect to the central Lysaght's Drain. The proposed drainage strategy is to reflect these catchments, to mimic the existing drainage.
- 4.3.2 As all the catchments are discharging to a water course, the existing greenfield runoff rate has been calculated to comply with requirements set by Scunthorpe & Gainsborough Water Management Board (SGWMB). This flow rate of 1.4 l/s/ha will be used for the Project.

4.4 Consultation

- 4.4.1 North Lincolnshire Council The NLC flood team have been consulted regarding the surface water strategy to include their requirement in the proposed design. Also, a meeting with the Lead Local Flood Authority and the SGWMB was held in May 2021 where the proposed strategy was presented for initial comments. It was confirmed that there are no records of historic flooding in the Order Limits. Refer to Appendix C and D for correspondence and meeting minutes.
- 4.4.2 Scunthorpe & Gainsborough Water Management Board (SGWMB)- A meeting with the SGWMB team was held in October 2020 where it was explained the project and the proposed surface water strategy. SGWMB stated that the proposed discharge rate has to be restricted to the greenfield runoff rate and not exceed 1.4l/s/ha. Refer to Appendix D for meeting minutes with SGWMB.

4.5 Sustainable Drainage Systems (SuDS)

4.5.1 Sustainable Urban Drainage Systems are used to reduce the impact of surface water from storm events on the existing environment mimicking the natural run-off characteristics of the site and removing pollutants from the urban run-off at source. There are various solutions which are described in the SuDS Manual (CIRIA C753) and include ground level features including swales and ponds, below ground systems (such as tanks, and infiltration techniques like soakaways). In addition, there are above ground solutions such as green roofs.

- 4.5.2 The Project considers the use of sustainable drainage techniques in accordance with local policy. The CIRIA SuDS Manual contains a hierarchy of sustainable methods of capturing and storing rainwater in a descending order: from drainage into the ground to recharging water resources. Since infiltration is not possible, surface water will be stored on site in open water features and then released at a controlled rate.
- 4.5.3 Non-infiltration SuDS features will not reduce the amount of surface water discharged; however, it will significantly delay and mitigate the peak flood flows from the Application Land. The hierarchy of SuDS techniques is shown below:
- 4.5.4 The SuDS features included in the design for the Project are listed below.

Table 4-1 SuDS Techniques.

	SUDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit	Suitability for the Project	Comments
Most Sustainable	Living roofs	√	√	✓	No	Not considered for the infrastructure areas
	Basins & ponds	√	√	√	Yes	Detention basins and swales are considered as the main elements to convey and attenuate the surface water generated for the proposed
	Constructed Wetlands			No	No	
	Balancing ponds				No	
	Detention basins				Yes	
	Retention ponds				No	
*	Filter strips & swales	√	√	√	Yes	impermeable areas.

	SUDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit	Suitability for the Project	Comments
	Rain Gardens	√	√	√	Yes	
	Infiltration devices	√	√	√	No	Not considered as
	Soakaways					this stage.
Least Sustainable	Infiltration trenches & basins					Results from ground investigation will determine if this option is available
	Permeable surfaces	✓	✓		Yes	To not be considered in the infrastructure areas, as not to adoptable requirements, but to be considered when building infrastructure is developed.
	Gravelled areas				Yes	Subject to landscape design
	Solid paving blocks				Yes	Subject to landscape design
	Porous pavers				Yes	Subject to landscape design

SUDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit	Suitability for the Project	Comments
Tanked systems	√			Yes	
Over-sized pipes/tanks				Yes	
Attenuation cells				Yes	

Detention Basins

- 4.5.5 The detention basins are proposed to be landscaped depressions that are normally dry except during and immediately following storm events. An allowance for topsoil/planting medium will be provided similar to a bio-retention system. The potential amenity/ecological use of the detention basin system allows this space to be flexible and provide multiple benefits to the Application Land.
- 4.5.6 Detention basins allow sedimentation and pollutant removal of the run-off. They will also provide the main source of attenuation across deliver a reduction in discharge volumes due to evapotranspiration.

Figure 4-1 Example Detention Basin.

Swales

4.5.7 Swales are shallow, flat bottomed, potentially vegetated channels designed to convey, treat and attenuate surface water runoff. They are designed to encourage evapotranspiration as well as infiltration to the ground. When incorporated into site design swales can be used to enhance the natural landscape and provide visual and biodiversity benefits. The swales across the Application Land are proposed to be wet swales that convey the surface water runoff to the detention basins where it will be attenuated and to the existing ditches where it will be discharged with restricted flow.

Figure 4-2 Example Swale.

4.6 Climate Change

- 4.6.1 The climate change allowances are based on the Table 2 Peak Rainfall Intensity Allowance in Small and Urban Catchments (use 1961 to 1990 baseline), produced by the Environment Agency (EA).
- 4.6.2 For the Project, it is considered at the upper end and the design life of the buildings is 40 years. From the table, the potential change in the peak rainfall intensity allowance anticipated is 20% however, after consultation with the LLFA , 40% has been used for the calculations.

Table 4-2-Peak rainfall intensity allowance in small and urban catchments (based on a 1961 to 1990 baseline).

Applies across all of England	Total potential change anticipated for 2015 to 2039	Total potential change anticipated for 2040 to 2069	Total potential change anticipated for 2070 to 2115
Upper End	+10%	+20%	+40%
Central	+5%	+10%	+20%

4.7 Pollution Control

- 4.7.1 The appropriateness of proposed SuDS for the Application Land has been evaluated based on the CIRIA Report C753 Simple Index Approach. This is based on a simple index system, in which SuDS components and types of sites are assigned an index value for pollutant mitigation/hazard levels. To deliver adequate treatment, the SuDS component should have a total pollution mitigation index equal to or larger than the pollution hazard index. The following table summarises the mitigation indices of the proposed SuDS.
- 4.7.2 Due to the multiple levels of treatment the proposed the SuDS are deemed sufficient for treating the various land use types.

Table 4-3 Mitigation indices of proposed SuDS components.

Mitigation indices							
Type of SuDS TSS Metals Hydrocarbons							
Swale	0.5	0.6	0.6				
Detention basin	0.5	0.5	0.6				
Filter Strips	0.4	0.4	0.5				

4.7.3 These values are then compared to the pollution hazard levels of each type of area within the Application Land to evaluate the adequacy of proposed SuDS.

Table 4-4 Pollution hazard indices of areas within the Application Land.

Land use	Pollution hazard level	Total suspended solids	Metals	Hydroc arbons	Proposed mitigation measure	Adequacy
Low traffic roads, residential car parks	Low	0.5	0.4	0.4	Swales and basins	√

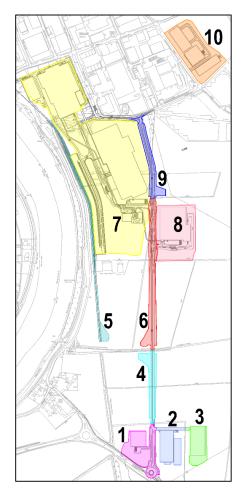
Land use	Pollution hazard level	Total suspended solids	Metals	Hydroc arbons	Proposed mitigation measure	Adequacy
Main access road	Medium	0.7	0.6	0.7	Swales, filter trenches and basins	√
Sites with Heavy Pollution	High	0.8	0.8	0.8	Swales, filter trenches and basins	√

4.8 Proposed Strategy

- 4.8.1 As noted, the Application Land is divided into 10 catchments, shown in Figure 4-3. These were divided due to the large area and several existing ditches crossing the Application Land. There are 10 detention basins and 1 storage tank used to promote biodiversity, treat water quality and attenuate stormwater before being discharged into the existing ditches. Where possible, swales will be used to convey runoff instead of pipes and basins will be used for storage instead of tanks. An orifice is used to control discharge rates from the basins. The proposed SuDS features included in the design are shown on the plan indicated in Figure 4-4 and Appendix F.
- 4.8.2 A hydraulic model has been created in MicroDrainage to design these systems to store the 1 in 100-year (plus 40% climate change) storm event prior to discharge into the existing ditches. Results are shown in Appendix I.
- 4.8.3 As part of the Project, the disused railway line between Flixborough Port and Drangonby Sidings will be reinstated. The LLFA confirmed during a meeting held in May 2021 that the no further restriction for the reinstated railway catchment will be required and it will maintain the existing strategy repairing or replacing the drainage that is not in acceptable condition.
- 4.8.4 The total area, effective impermeable area, and allowed discharge for each catchment is summarised in Table 4-5, which were calculated using the Percentage Impermeable proportions assumptions shown in Table 4-6.
- 4.8.5 The SuDS storage designs and attenuation volumes required are presented in Table 4-7. Areas that contribute runoff into each system is also identified. A short description of the drainage strategy for each catchment is included below, and the calculations and detail follow in the subsequent sections.

Table 4-5: Areas and allowed discharge for each catchment.

Catchment	Total Area (ha)	Impermeable Area (ha)	Allowed Discharge (l/s)
1	1.7	1.0	2.4
2	0.9	0.7	1.2
3	0.9	0.6	1.3
4	0.9	0.4	1.3
5	0.7	0.5	1.0
6	1.8	0.9	2.6
7	16.7	11.1	23.4
8	3.3	2.1	4.6
9	1.0	0.5	1.4
10	2.6	1.4	3.6


Table 4-6: Percentage Impermeable proportion assumptions.

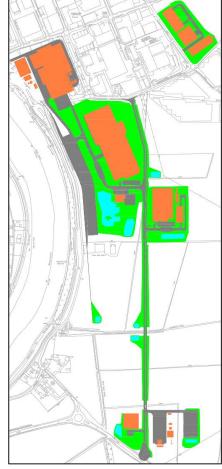

Area	Percentage Impermeable Proportion (%)						
Roof	90						
Road	75						
Grass	30						
Detention Basin	100						

Table 4-7: Summary of SuDS storage designs.

Catchment	Туре	Base Area (m²)	Top Area (m²)	Depth (m)	Total Storage (m³)	Areas Drained
1	Detention Basin 1	550	925	1.3	950	Southern hydrogen and natural gas above ground installations (AGI)
2	Storage Tank 1	756	756	0.914	670	Western hydrogen production and storage facility and electric vehicle (EV) and hydrogen (H2) refuelling station
3	Detention Basin 2	300	640	1.5	685	Eastern hydrogen production and storage facility and electric vehicle (EV) and hydrogen (H2) refuelling station
4	Detention Basin 3	405	600	0.8	400	Southern Access Road
5	Detention Basin 4	165	435	1.5	435	Railway
6	Detention Basin 5	265	585	1.3	535	Central Access Road
7	Detention Basin 6	6400	7460	0.95	6500	North-western ERF and northern concrete block manufacturing facility & plastic recycling facility
7	Detention Basin 7	1490	2215	1.5	2745	North-western ERF and northern concrete block manufacturing facility & plastic recycling facility
8	Detention Basin 8	1045	1625	1.5	1985	Southern concrete block manufacturing

Catchment	Туре	Base Area (m²)	Top Area (m²)	Depth (m)	Total Storage (m³)	Areas Drained
						facility & plastic recycling facility
9	Detention Basin 9	520	730	0.8	500	Northern Access Road
10	Storage Tank 2	2335	2335	0.61	1350	Northern hydrogen and natural gas above ground installations

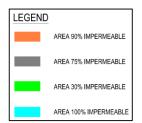
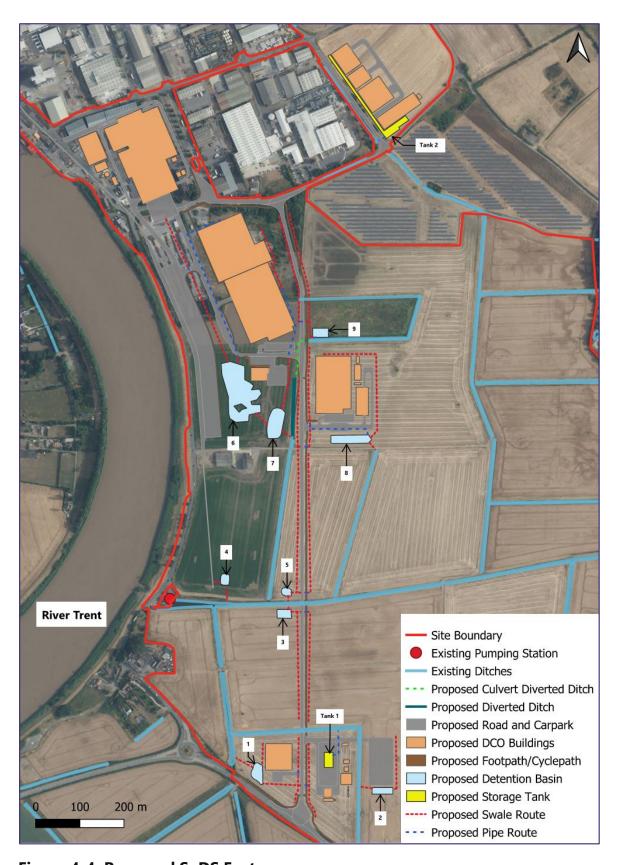



Figure 4-3: Catchment Plan.

Figure 4-4: Proposed SuDS Features.

Catchment 1

4.8.6 Catchment 1 will discharge runoff from the southern hydrogen and natural gas above ground installations and access road to existing ditch 1 in the southwestern area at a discharge rate of 2.4 l/s. Stormwater will be conveyed using swales. Attenuation will be provided in detention basin 1 located adjacent to Ferry Road West. The storage will comprise of a 1.3 m deep basin providing the attenuation volume of 950 m³.

Catchment 2

4.8.7 Catchment 2 will discharge runoff from the western hydrogen production and storage facility and electric vehicle (EV) and hydrogen (H2) refuelling station to existing ditch 2 in the southern area at a discharge rate of 1.2 l/s. Stormwater will be conveyed using pipes. Attenuation will be provided in storage tank 1 located under the carpark due to the space constraint in this area. The storage will comprise of a 0.914 m deep ACO StormBrixx SD tank providing the attenuation volume of 670 m³.

Catchment 3

4.8.8 Catchment 3 will discharge runoff from the eastern hydrogen production and storage facility and electric vehicle (EV) and hydrogen (H2) refuelling station to existing ditch 3 in the southern area at a discharge rate of 1.3 l/s. Stormwater will be conveyed using swales. Attenuation will be provided in detention basin 2. The storage will comprise of a 1.5 m deep basin providing the attenuation volume of 685 m³.

Catchment 4

4.8.9 Catchment 4 will discharge runoff from the proposed central access road to existing ditch 5 in the central area at a discharge rate of 1.3 l/s. Stormwater will be conveyed using swales adjacent to the roads. Attenuation will be provided in detention basin 3. The storage will comprise of a 0.8 m deep basin providing the attenuation volume of 400 m³. The outfall into the ditch will be above the existing sheet pile wall seen in Figure 3-3e.

Catchment 5

4.8.10 Catchment 5 will discharge runoff from the railway to existing ditch 4 in the western area at a discharge rate of 1.0 l/s. Stormwater will be conveyed using swales. Attenuation will be provided in detention basin 4. The storage will comprise of a 1.5 m deep basin providing the attenuation volume of 435 m³.

Catchment 6

4.8.11 Catchment 6 will discharge runoff from the proposed central access road to existing ditch 5 in the central area at a discharge rate of 2.6 l/s. Stormwater will be conveyed using swales adjacent to the roads. Attenuation will be provided in detention basin 5. The storage will comprise of a 1.3 m deep basin providing the attenuation volume of 535 m³.

Catchment 7

4.8.12 Catchment 7 will discharge runoff from the North-western ERF and northern concrete block manufacturing facility (CBMF) & plastic recycling facility (PRF) to existing ditch 6 in the central area at a discharge rate of 23.4 l/s. Stormwater will be conveyed using swales where possible. However, the western and eastern side of the northern CBMF and PRF will require some piped systems due to the space constraint. Attenuation will be provided in detention basin 6 and 7. The storage will comprise of a 0.95 and 1.5 m deep basin providing the attenuation volume of 6,500 m³ and 2,745 m³, respectively.

Catchment 8

4.8.13 Catchment 8 will discharge runoff from the southern CBMF and PRF to existing ditch 7 in the central area at a discharge rate of 4.6 l/s. Stormwater will be conveyed using swales. Attenuation will be provided in detention basin 8. The storage will comprise of a 1.5 m deep basin providing the attenuation volume of 1.985 m³.

Catchment 9

4.8.14 Catchment 9 will discharge runoff from the proposed northern access road to existing ditch 9 at a discharge rate of 1.4 l/s. Stormwater will be conveyed using swales adjacent to the roads. Attenuation will be provided in detention basin 9. The storage will comprise of a 0.8 m deep basin providing the attenuation volume of 500 m³.

Catchment 10

4.8.15 Catchment 10 will discharge runoff from the hydrogen and natural gas above ground installations and substations to existing ditch 10 in western side of the road at a discharge rate of 3.6 l/s. Stormwater will be conveyed using pipes adjacent to the buildings. Attenuation will be provided in storage tank 2. The storage will comprise of a 0.61m deep ACO StormBrixx HD tank providing the attenuation volume of 1350 m³. It should be noted that, due to the constraints of the site and the levels, a pump solution may be required for this area, subject to detailed design.

4.9 **Diverted Ditch**

- 4.9.1 Existing Ditch 6 will be diverted due to the location of the proposed access road. The proposed diversion route is shown in Figure 4-6.
- 4.9.2 Calculations for the networks can be found in Appendix I.

Figure 4-5: Image of ditch to be diverted.

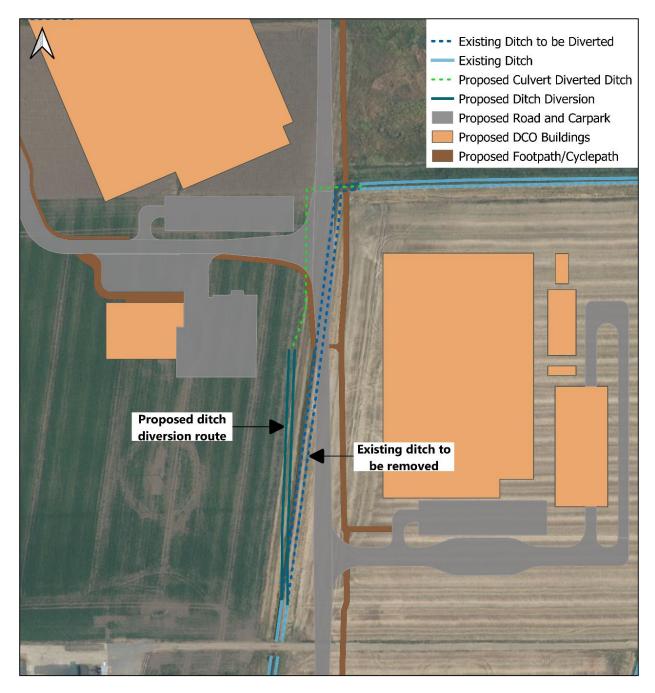


Figure 4-6: Proposed ditch diversion route.

4.10 Designing for Exceedance

4.10.1 The Energy Park buildings will be constructed on platforms raised above the existing levels, to raise the buildings out of the River Trent flood areas. Overland flow paths around these platforms will be maintained such that any exceedance events will follow the existing flow paths to the existing points of discharge. The exceedance flow routes are shown in Figure 4-7, where runoff will be diverted to the existing ditches.

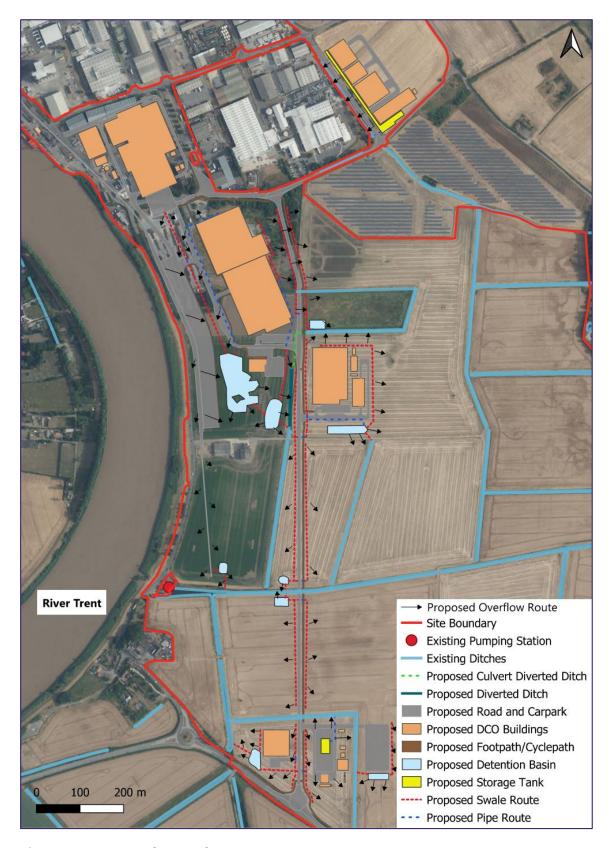


Figure 4-7: Exceedance Flow Routes.

4.11 Easements

4.11.1 SGWMB stated that there is a 9m easement from top of the bank for the existing ditches that can be reduced to 6m after applying for a consent.

4.12 Maintenance

- 4.12.1 Regular maintenance of the sustainable drainage system is essential to maintain its performance and avoid failure of the mechanical/electrical components.
- 4.12.2 Discussions with Severn Trent are ongoing to confirm the adoptability of the various SuDS features.
- 4.12.3 An agreed maintenance programme will be prepared in accordance with CIRIA guidance and supervised by the adopting authority. This will be included within the Building Manual for the development on completion. An outline maintenance plan is shown in Appendix G.
- 4.12.4 Table 4-8 shows the proposed responsible party for the maintenance of the SuDS features for the different catchments:

Table 4-8 Maintenance and ownership

Catchment	Maintenance and ownership Catchment Type		
1	North Lincolnshire Council (Public)	Public Highway	
2	Landowner (Private)	Development Land	
3	Landowner (Private)	Development Land	
4	North Lincolnshire Council (Public)	Public Highway	
5	Landowner (Private)	Development Land	
6	North Lincolnshire Council (Public)	Public Highway	
7	Landowner (Private)	Development Land	
8	Landowner (Private)	Development Land	
9	North Lincolnshire Council (Public)	Public Highway	
10	Landowner (Private)	Development Land	

5 Proposed Foul Water Drainage Strategy

5.1 General

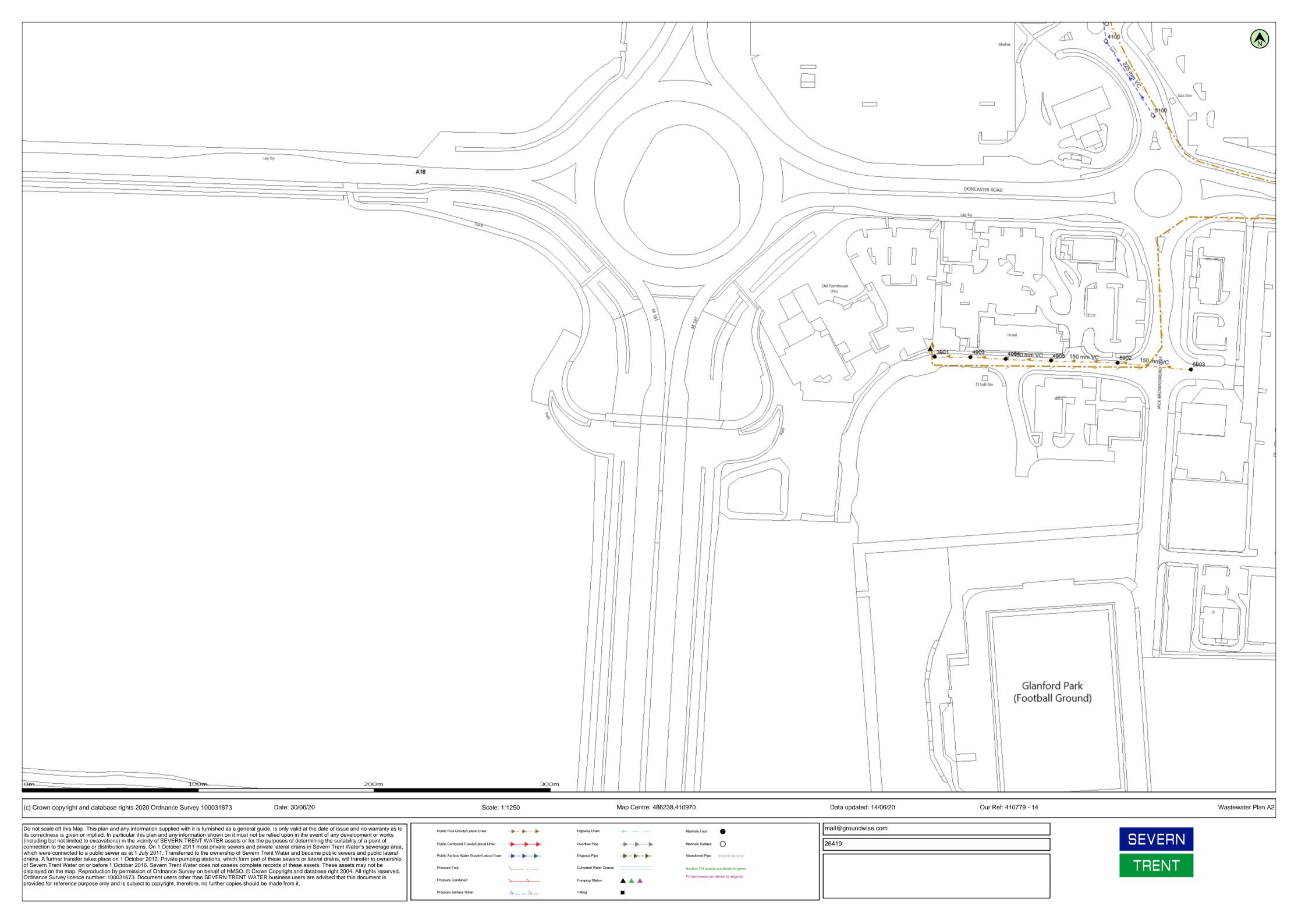
5.1.1 The foul water strategy has been developed in accordance with the Severn Trent Water (STW) requirements and Building regulations. The proposed layout can be found in Appendix H.

5.2 Severn Trent Consultation

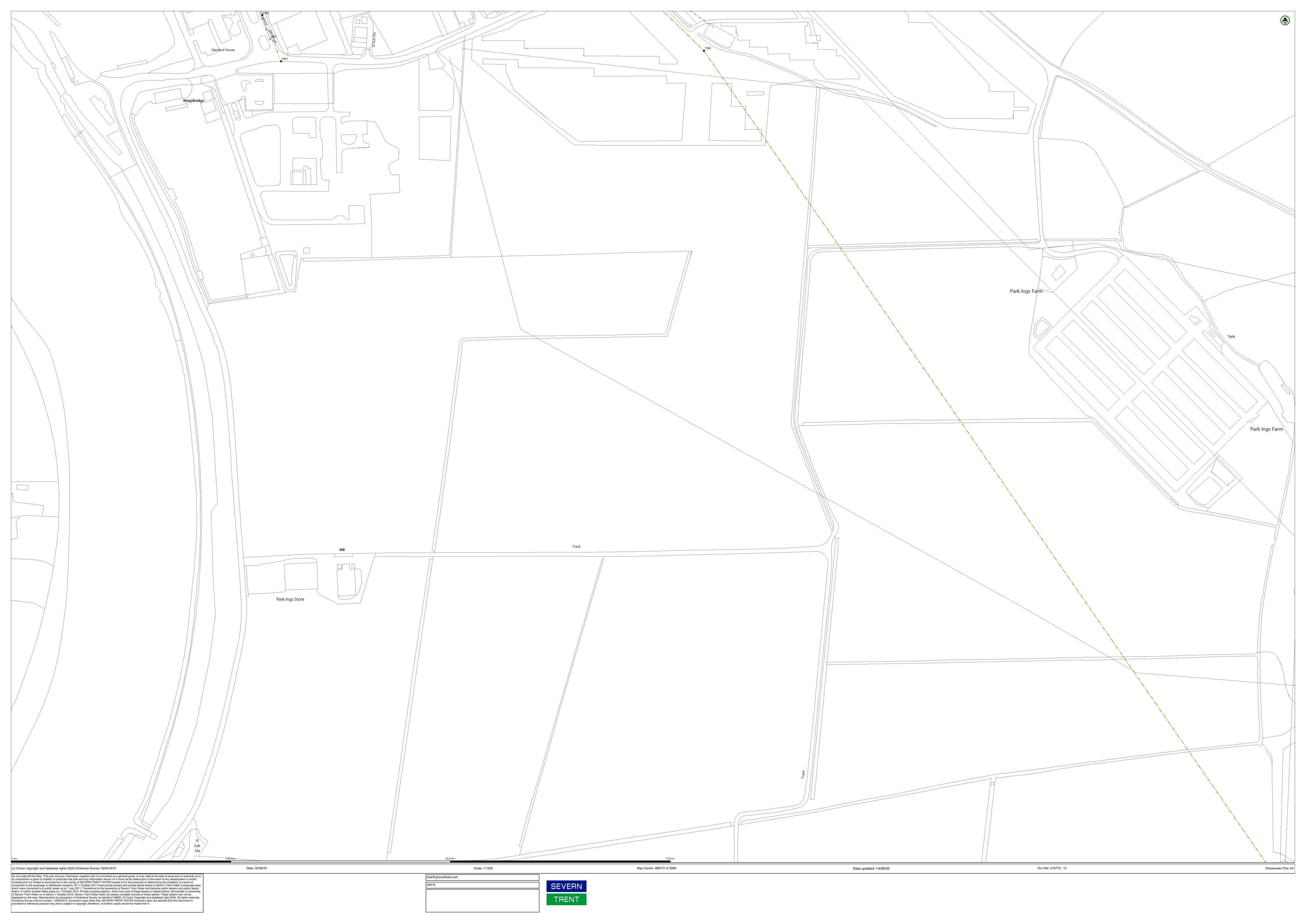
- 5.2.1 A Pre-development enquiry was submitted to STW in February 2021.
- 5.2.2 STW suggested that sewer modelling was required to check the available capacity in the existing network and connection locations. A summary of the results was received in January 2022 where it was highlighted that the existing network will need to be upgraded to take the proposed flows.
- 5.2.3 A meeting to clarify the results from the sewer modelling was held in February 2022 where Severn Trent highlighted that the existing modelling shows that the existing network is already under capacity and that any additional flow would require upgrades to the network.
- 5.2.4 Further meetings with STW took place in August and November of 2022 to understand the upgrade requirements and timelines for delivery. The split of flow between domestic and trade effluent was also confirmed. Additionally, it was agreed that STW would include in their assessment the flow which is removed from the network due to the demolition of several properties as part of the scheme.
- 5.2.5 In February 2023 STW confirmed that the domestic effluent proposed to be discharged from the scheme would be less than the flow removed from the network due to the demolition of the existing buildings. On this basis STW confirmed that "further modelling will not be going ahead as the domestic flow does not exceed the previously discharged trade flow of 0.35 l/s that has been removed." And that STW "can confirm that we can accept the domestic flows proposed in the email from Alan Corner dated 25/01/23."
- 5.2.6 On this basis the domestic effluent will discharge direct to the STW sewer and the trade effluent will be treated and reused on site.
- 5.2.7 Refer to Appendix A for asset records and Appendix E for correspondence.

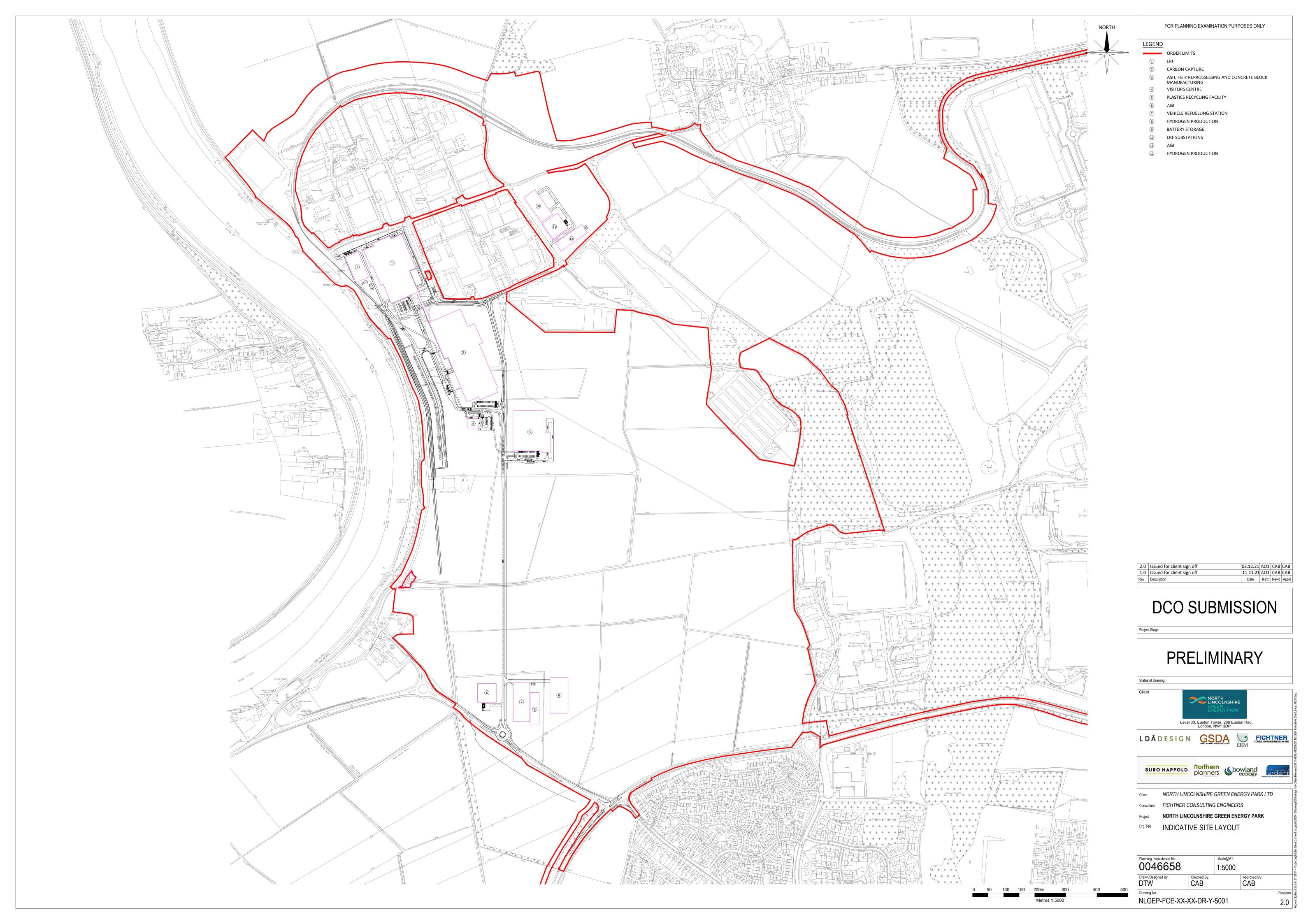
5.3 Proposed Strategy

- 5.3.1 The network has been designed to split up trade effluent and domestic effluent.
- 5.3.2 The trade effluent will be treated and reused in the various processes on site. An effluent treatment plant facility will be located in the ERF building. This will mean that there is no trade effluent discharge to the public sewer or to the wetland areas.
- 5.3.3 The domestic effluent will discharge to the public sewer as agreed with STW.
- 5.3.4 Due to the geography of the development the areas have been split up into three areas.
- 5.3.5 Network 1 has been designed to take any domestic foul effluent from the southern hydrogen and natural gas above ground installations (AGI) and the electric vehicle (EV) and hydrogen (H2) refuelling station, plastic recycling facility (PRF), visitor's centre and the concrete block manufacturing facility (CBMF), and discharge to the existing public sewer located in Bellwin Drive. Due to topography and proposed levels, a gravity connection to the existing public sewer cannot be achieved and a pumping solution will be required. The strategy will be to collect foul water from the gas AGI and the facilities located on the electric vehicle (EV) and hydrogen (H2) refuelling station and discharge by a gravity system to a pumping station, which will pump to another pumping station located to the north of the PRF. This will in turn, pump to the public sewer.
- 5.3.6 The trade effluent in this area will be pumped via a separate system to the treatment plant located in the ERF facility.
- 5.3.7 Network 2 has been designed to take any domestic foul effluent from the Energy Recovery Facility and adjacent facilities and discharge, via gravity, to the existing public sewer located on Bellwin Drive.
- 5.3.8 The trade effluent in this area will discharge direct to the treatment plant located in the ERF facility.
- 5.3.9 Network 3 has been designed to take any domestic foul effluent from the hydrogen and natural gas above ground installations (AGI) located to the north eastern part of the Project. Buildings will be drained by gravity to a pumping station that will pump the flow to the existing public sewer located on Bellwin Drive.
- 5.3.10 The trade effluent in this area will be pumped via a separate system to the treatment plant located in the ERF facility.


5.3.11 The pumping stations will be designed to adoptable standards. At this stage it is anticipated that emergency storage will be required and will be designed in accordance with Sewers for Adoption. Proprietary tank systems are proposed to provide this storage.

Appendix A Severn Trent Asset Records





Appendix B Proposed Masterplan

Appendix C Correspondence with LLFA

Francisco Rodriguez

From: Billy Green

Sent: 19 March 2021 12:28 **To:** Francisco Rodriguez

Cc: 046658 North Lincs Green Energy Park; Colin Byrne; Nathan George;

LLFAdrainageteam

Subject: RE: North Lincs Green Energy Park- DN15 8UE. LLFA advice

External Email. This email originated from outside Buro Happold.

Hi Francis

Not that I know of...

We just require a fully compliant FRA and Drainage Strategy...

Kind Regards

Billy Green on behalf of the LLFA Drainage Team Flood Risk Team Asset & Infrastructure Services North Lincolnshire Council

From: Francisco Rodriguez < Sent: 19 March 2021 10:35

To: Billy Green <

Cc: 046658 North Lincs Green Energy Park < >; Colin Byrne

>; Nathan George < >; LLFAdrainageteam

<LLFAdrainageteam@northlincs.gov.uk>

Subject: RE: North Lincs Green Energy Park- DN15 8UE. LLFA advice

Good Morning Billy,

Thank you very much for your prompt response.

Could you please confirm if we need any specific documents that we have to complete for the DCO planning application?

Kind Regards

Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer Buro Happold | Cities Infrastructure Leeds

T:+44 (0)1132 042200

www.burohappold.com | Twitter | Instagram

BURO HAPPOLD

From: Billy Green <

Sent: 19 March 2021 09:56

To: Francisco Rodriguez >

Cc: 046658 North Lincs Green Energy Park

>; Nathan George < ; LLFAdrainageteam

<LLFAdrainageteam@northlincs.gov.uk>

Subject: RE: North Lincs Green Energy Park- DN15 8UE. LLFA advice

External Email. This email originated from outside Buro Happold.

Good morning Francisco

Your proposed surface water drainage strategy concept is acceptable in principle. The detail will obviously be confirmed at a later date.

There is not a lot more I can say at this stage.

Kind Regards

Billy Green on behalf of the LLFA Drainage Team Flood Risk Team Asset & Infrastructure Services North Lincolnshire Council

From: Francisco Rodriguez <

Sent: 18 March 2021 09:08

To: Billy Green <

Cc: 046658 North Lincs Green Energy Park < ; Colin Byrne

>; Nathan George <

Subject: RE: North Lincs Green Energy Park- DN15 8UE. LLFA advice

Good Morning Billy,

Hope you are well,

Could you please assist with the below email?

Please let me know if you require further information

Kind Regards

Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer

Buro Happold | Cities Infrastructure Leeds

www.burohappold.com | Twitter | Instagram

BURO HAPPOLD

From: Francisco Rodriguez
Sent: 18 February 2021 14:56

To: <u>LLFAdrainageteam@northlincs.gov.uk</u>

Cc: 046658 North Lincs Green Energy Park ; Colin Byrne

>; Nathan George <

Subject: North Lincs Green Energy Park- DN15 8UE. LLFA advice

Good Afternoon,

Hope you are keeping well,

We are working on a new development in Flixborough to the south of the Flixborough Industrial Estate, DN15 8UE. The scheme is called The North Lincs Green Energy Park and it is composed of various buildings which includes a new facility where energy will be recovered/produced from burning the waste left overs. Also, there is a concrete plant next to it which will use the ash produce by the Energy Park and also a polymer plant where the plastic from the waste will be melted and recycled. There will be a gas station to the north and an electrical charge point car park to the south. In addition, some vertical farming and glasshouses buildings are also part of the scheme.

The Waste left overs will be brough to the Energy Park via a new access road, a refurbished railway that will include a new stop and from the river using the existing port.

It should be noted that part of the project will go through the DCO (development consent order) scheme due to it meets national needs: reduce amount of waste and generate low carbon energy.

With regards to flooding and based on the Flood map for planning website, the site is in Flood Zone 3 however, it is within the areas benefiting from flood defences.

Our Water team is working on the impact of introducing this new facility in the current site. It is envisaged that the new buildings and the access road will be protected from flooding raising up the levels in that area whereas the rest of the site will be for flood compensation and biodiversity benefits.

With regards to the surface water strategy, a meeting with the Scunthorpe & Gainsborough Water Management Board (SGWMB) was held 21/10/2020 where it was discussed how the existing drainage surface water strategy works and what restrictions/constraints are presented for the new scheme. SGWMB highlighted that the proposed discharge rate has to match the existing greenfield runoff which it has been assumed as 1.4l/s/ha as they stated.

Our proposed strategy will be to collect the surface water for the new impermeable areas and convey the water via swales to an attenuation pond where the water will be restricted and discharge to an existing ditch at the agreed discharge rate. The aim of the proposed surface water strategy is to use as much SuDS as possible which will be designed in accordance with Ciria C753 and the SuDS manual.

It is envisaged to submit information for DCO by September and we would like to know if the LLFA have any requirement that needs to be incorporated in our drainage strategy such as flow restriction or any specific documents that we have to complete for the planning application.

Please don't hesitate to contact me if further information is required,

Kind Regards

Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer
Buro Happold | Cities Infrastructure Leeds

BURO HAPPOLD

This transmission is confidential and intended solely for the person or organisation to whom it is correctly addressed. If you are not the intended recipient of this transmission, you should not take any action in reliance on it. Further, this transmission may contain confidential design and other information owned by Buro Happold Ltd. You should not copy, distribute, use, offer for sale or hire such information or in any way infringe the design and intellectual property rights of Buro Happold Ltd. It is intended that communication by email from Buro Happold Ltd or its employees is limited to communications connected to the services provided by Buro Happold Ltd. Buro Happold Ltd accepts no liability for any communications not connected to the services it provides. Computer viruses may be transmitted or downloaded onto your computer system via email communication. It is the recipient's responsibility to take any action necessary to prevent computer viruses being transmitted in this way. Accordingly, Buro Happold Ltd disclaims all responsibility which arises directly or indirectly from such transmission of computer viruses. Buro Happold Ltd. Registered in England: 2049511.

This e-mail expresses the opinion of the author and is not necessarily the view of the Council. Please be aware that anything included in an e-mail may have to be disclosed under the Freedom of Information Act and cannot be regarded as confidential. This communication is intended for the address(es) only. Please notify the sender if received in error. All Email is monitored and recorded. Please think before you print- North Lincolnshire Council greening the workplace.

This e-mail expresses the opinion of the author and is not necessarily the view of the Council. Please be aware that anything included in an e-mail may have to be disclosed under the Freedom of Information Act and cannot be regarded as confidential. This communication is intended for the address(es) only. Please notify the sender if received in error. All Email is monitored and recorded. Please think before you print- North Lincolnshire Council greening the workplace.

Meeting:

Surface water drainage strategy- Meeting with LLFA and SGWMB to share the strategy and get their initial thoughts about it

Date:

10/05/2021 14:00-15:00

Attendees:

Billy Green – BG (LLFA)
Paul Jones – PJ (SGWMB)
Colin Byrne – CB (BH)
Francisco Rodriguez – FR (BH)
Stefan Gandler – SG (BH)

Items discussed:

- All parties introduce themselves
- FR gave a brief project description of the project and the proposed surface water strategy including discharge rate criteria and proposed sustainable drainage features considered.
- PJ agreed with the discharge rate criteria which is the same than the pumping station located in Lysaght's drain.
- PJ explained that the SGWMB is working with the Council to produce a flood model of the area to include hypothetic situation of a failure in the pumping station.
- PJ explained that any alteration within the 9m from top of the bank of any watercourse in the area (either they oversee them or not) have to go through a Consent Application that can be done post planning.
- BG stated that any highway drainage (swales and detention basin) or any structure that
 goes under it, have to be adopted by Highways and therefore design in accordance to
 meet their criteria.
- PJ and BG stated that there are no records of historic flooding on the proposed development.
- PJ stated that a capacity check of the existing drains is required to make sure the proposed flows can be accommodated in the existing drains.
- SGWMB don't adopt any drainage.
- BG confirmed that a 40% climate change is suitable for this area as the development is in a floodable area.
- PJ confirmed that there is no specific detail for the proposed connections to the existing drains.
- CB mentioned that the existing railway will be reinstated and BG confirmed that the railway drainage to be repaired or replaced if require but will not require further restriction on the discharge rate.
- The northern pumping station pumps water to River Trent, where it follows the route of the railway in the northern area of the site.
- PJ said that proposed bridges on the highways will require a consent order. A vehicle must be able to fit underneath bridge or there must be access to either side of the ditch.
- PJ mentioned that the existing ditches have a 1m freeboard but can fill up during extreme events.

 The ditch connection level should be as close as possible to existing ground level/ the top of bank to avoid a submerge connection during extreme events.
Summary of actions:
BH to include the above information on the surface water drainage strategy.
Changes to the DCO:

Appendix D Correspondence with SGWMB

BURO HAPPOLD

Job no

046658

Minutes

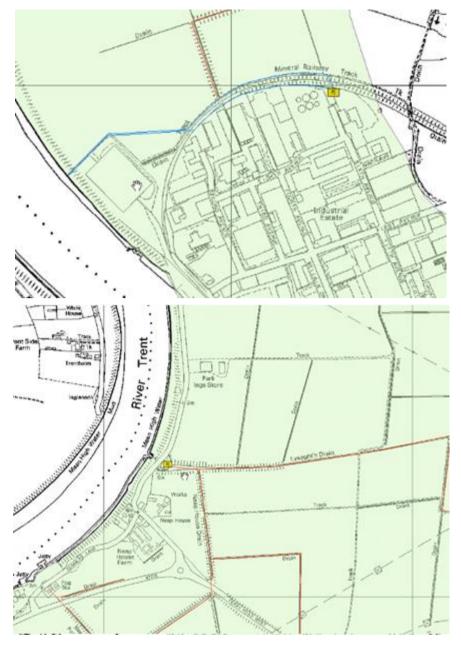
Subject NLGEP - MEETING WITH SCUNTHORPE &

GAINSBOROUGH WATER MANAGEMENT

BOARD

Place TEAM CALL Date 21 October 2020

Present Craig Benson (CB)- SGWMB Apologies Paul Jones (PJ)-SGWMB


Benjamin Jackson (BJ)- SGWMB Colin Byrne (CBy)-BH

Paul Thomson(PT)-BH Francisco Rodriguez(FR)-BH

Distribution As above

Objective of meeting: Introductory meeting for the North Lincolnshire Green Energy Park project regarding existing surface water drainage

Item Action 1.0 Introduciton 1.1 FR gave a brief project description covering the following points Project site located in Flixborough. Proposals include a main site for a new energy park and some glasshouses with vertical farming. The different access to the energy park (new road, refurbished railway and new port). The intention is to submit the main energy park through a DCO application in approximately one years' time and the other plots a few months later as part of two separate local planning applications. 2.0 Existing Drainage CB explained that the existing land is drained by a series of main watercourses and small water bodies that discharge to the river Trent. There are 2 pumping stations and outfalls. One to the north of the Industrial Estate and one to the north of Neap House and south of the proposed site. See images for clarity.

2.2 CB will send the watercourses, pump stations and catchment areas for the pumping station in **shape format** to include it in our design.

SGWMB(CB)

- 2.3 CB will try to find if there is any geometry of the watercourses that can be sent to us.
 - CB specified that any surface water that discharge to the watercourses has to be restricted to the greenfield runoff rate and
- 2.5 FR mentioned that the site is split in three areas and it was asked if the required applications/consents have to be sent separately or one in conjunction (one for everything). CB explained the best approach is to speak to PJ and agree the way to proceed in each case.
- 2.6 CB confirmed that Paul Jones (PJ) is the best contact to send the applications/consents and any question.

SGWMB(CB)

don't exceed 1.4l/s/ha.

2.4

- 2.7 CB confirmed the timescale for a response is **2months** for any consent/application.
- 2.8 CB stated that there is a 9m easement from the top of the watercourse bank (it could be reduced to 6m).
- 2.9 CB stated that there are no issues building over the watercourses and they can be culverted or diverted if necessary, but this has to be consulted via the consent process.
- 2.10 CB stated that not all the consents may have a fee associated. This will need to be discussed with PJ when we have more details.
- 2.11 CB stated that anything within the region (small watercourses, ditches,etc) requires approval from the Board.
- 2.12 CB mentioned the watercourses are maintained annually about this time.

The minutes detailed herein reflect the author's recollection of the discussions held during the meeting detailed above. If you feel that these minutes are inaccurate; proposed additions, corrections and/or comments must be submitted to the author in writing within five working days of the date of these minutes. If no written responses are received within this period, these minutes will be deemed the official record of the meeting.

Appendix E Correspondence with Severn Trent						

Francisco Rodriguez

From: Mussa, Asif <

Sent: 15 February 2023 14:15

To: Francisco Rodriguez; Colin Hammond; Meecham, Dave; Susie Byrne; David Bell;

Colin Byrne; Alan Corner

Cc: Andrew Bradley; Nathan George; Laura Tinker
Subject: RE: NLGEP-Severn Trent SOCG follow up

Follow Up Flag: Follow up Flag Status: Completed

External Email. This email originated from outside Buro Happold.

ST Classification: OFFICIAL PERSONAL

Hi Francisco

Thank you for your email below.

The further modelling will not be going ahead as the domestic flow does not exceed the previously discharged trade flow of 0.35 l/s that has been removed.

I can confirm that we can accept the domestic flows proposed in the email from Alan Corner dated 25/01/23.

Kind regards

Asif Mussa

Senior Evaluation Technician Asset Protection Asset Strategy & Planning Chief Engineer, Severn Trent Water

Subject: RE: NLGEP-Severn Trent SOCG follow up

Hi All,

Francisco Rodriguez

From: Mussa, Asif <

Sent: 02 February 2023 09:15

To: Alan Corner

Cc: Francisco Rodriguez; Colin Byrne; Nathan George

Subject: RE: DE-8462592 Energy Green Park, Stather Road, Flixborough, Lincs SCA-0749

External Email. This email originated from outside Buro Happold.

ST Classification: OFFICIAL PERSONAL

Hi Alan


Thank you for your email below.

I have passed this on to our consultants to confirm if this would need to be modelled again.

Kind regards

Asif Mussa

Senior Evaluation Technician Asset Protection Asset Strategy & Planning Chief Engineer, Severn Trent Water

WONDERFUL ON TAP

From: Alan Corner <

Sent: 25 January 2023 16:48

To: Mussa, Asif

Cc: Francisco Rodriguez < >; Colin Byrne

Nathan George <

Subject: DE-8462592 Energy Green Park, Stather Road, Flixborough, Lincs SCA-0749

Hi Asif,

Thank you for confirming that Severn Trent have removed a flow of 0.35 l/s from the model as representing the flows from the buildings to be demolished.

The proposed NLGEP has:

150 staff per 8-hour shift each assumed to each produce 50 litres/shift. There will be 3 shifts per day and work occurs 7 days per week.

50 visitors each weekday – assumed over an 8-hour daytime period. Assumed to produce 50 litres each.

So as average values we have estimated:

- 8-hours period during a working day we have 200 persons on site generating 10,000 litres of foul flows or 0.347 l/sec average.
- Over a 24-hour period we have 500 persons each using 50 litres so 25,000 litres of foul flow or 0.289 l/sec average.

Can we please ask if you and the team at Severn Trent can assess what average domestic foul flows the staff plus visitors will generate and therefore how many of these up to 200 persons can be accommodated in the public sewers, based on the fact that we have removed 0.35l/s flows. So effectively a like for like replacement. The EA have written suggesting that they would prefer for all domestic foul flows to be connected to the public sewers.

We can then consider in more detail if the design needs to propose a foul strategy to deal with the visitor centre foul flows on the site and differently to the staff.

Best Regards Alan

Alan Corner Director

Corner Water Consulting Ltd

Telephone:

This message is confidential. It may not be disclosed to, or used by, anyone other than the addressee. If you receive this message in error, please email the sender. Internet e-mails are not necessarily secure. Corner Water Consulting does not accept responsibility for changes to any e-mail that may occur after the e-mail has been sent. Attachments to this e-mail may contain software viruses that may damage your systems. Registered in England and Wales. Company number 13675352. Registered for VAT. Registration number 398 2304 71

Subject: RE: DE-8462592 Energy Green Park, Stather Road, Flixborough, Lincs SCA-0749

ST Classification: OFFICIAL PERSONAL

Hi Alan

Please see comments below:

The 'existing' area within the hydraulic model that was removed as land to be developed is indicated in the screenshot below.

To clarify, the buildings coloured purple are those that were removed. These were assessed as representing the highlighted developed areas of the drawing NLGEP-BHE-XX-XX-SK-100, shaded green, red and brown if I recall correctly.

The flows within the model associated to these trade dischargers amounted to 0.35 l/s as previously stated. This is represented in the model as trade flow, not domestic flow. Trade flows should account for all flow from these sites.

Francisco Rodriguez

From: Net Dev East <Net.Dev.East@severntrent.co.uk>

Sent: 10 May 2021 15:49 **To:** Francisco Rodriguez

Subject: RE: Developer Enquiry Response: Stather Road, Flixborough

Our Ref: 8462592

Follow Up Flag: Follow up Flag Status: Completed

External Email. This email originated from outside Buro Happold.

ST Classification: OFFICIAL PERSONAL

Hi Francisco

Thank you for your email below and apologies for the delay in response, I have been off work for a few weeks.

We will require sewer modelling as the flows are pumped and there are two sewage pumping stations that will be affected so we will need to know if they have the capacity for the extra flows.

Please also be aware that as there will be trade effluent you will need to contact our business services team.

Would you like me to progress with requesting a quote for sewer modelling? The process can take a minimum of 2 months.

Kind regards

Asif Mussa

Senior Evaluation Technician Asset Protection (Wholesale Operations) East

From: Francisco Rodriguez

Sent: 30 April 2021 13:51

To: Net Dev East < Net.Dev.East@severntrent.co.uk >

Cc: 046658 North Lincs Green Energy Park ; Colin Byrne

>

Subject: RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

Hi Asif,

Could you please provide us with an update of my previous email?

Thanks

Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer

Buro Happold | Cities Infrastructure Leeds

BURO HAPPOLD

From: Francisco Rodriguez Sent: 06 April 2021 16:38

To: Net Dev East < Net.Dev.East@severntrent.co.uk >

Cc: 046658 North Lincs Green Energy Park < ; Colin Byrne

Subject: RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

Hi Asif,

We have estimated that approximately 2l/s has been removed from the network that is located in Bellwin Drive/First Avenue as part of the buildings that will be demolished and we are adding 5.5 l/s to the network for the new buildings, which means that we are adding 3.5 l/s extra to the existing network in Bellwin Drive/ First Avenue as specified in the attached sketch.

Is it required a modelling exercise to assess if the additional 3.5l/s can be accommodated within the existing network or could we have an answer without it?

Also, can you please let us know a contact number or email address to contact you directly? It has been two months since we applied for the pre development enquiry and we would like to speed things up. It is a bit frustrating we have to wait two weeks to receive an answer for something that can be sorted with a 5min conversation.

Kind Regards

Francisco Rodriguez (Francis)

Infrastructure Engineer

Buro Hannold | Cities Infrastructure Leeds

BURO HAPPOLD

From: Net Dev East <Net.Dev.East@severntrent.co.uk>

Sent: 06 April 2021 15:34

To: Francisco Rodriguez < <u>com</u>>

Cc: 046658 North Lincs Green Energy Park < >; Colin Byrne

Subject: RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

External Email. This email originated from outside Buro Happold.

ST Classification: OFFICIAL PERSONAL

Hi Francis

Thank you for your email below.

Sewer modelling will be required and as it is a commercial development, we would not fund the exercise.

Would you like me to request a quote for sewer modelling?

Kind regards

Asif Mussa

Senior Evaluation Technician Asset Protection (Wholesale Operations) East

From: Francisco Rodriguez

Sent: 19 March 2021 13:21

To: Net Dev East < Net.Dev.East@severntrent.co.uk >

Cc: 046658 North Lincs Green Energy Park <046658@burohappold.onmicrosoft.com>; Colin Byrne

Subject: RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

Hi Asif,

Thanks for the email.

I have attached a sketch with the buildings and flows that are expecting to be pumped or discharged by gravity.

Due to levels, we envisage that only the Green Energy Park (green building) will discharged by gravity to the public sewer located in Bellwin drive/First Avenue.

Please let me know if you require further information.

Kind Regards Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer Buro Happold | Cities Infrastructure Leeds

BURO HAPPOLD

From: Net Dev East <Net.Dev.East@severntrent.co.uk>

Sent: 19 March 2021 11:07

To: Francisco Rodriguez

Cc: 046658 North Lincs Green Energy Park < <u>046658@burohappold.onmicrosoft.com</u>> **Subject:** RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

External Email. This email originated from outside Buro Happold.

ST Classification: OFFICIAL PERSONAL

Hi Francis

Thank you for your email below.

Are the flows going to be pumped or discharged by gravity?

Kind regards

Asif Mussa

Senior Evaluation Technician Asset Protection (Wholesale Operations) East

From: Francisco Rodriguez <

Sent: 08 March 2021 10:06

To: Net Dev East <Net.Dev.East@severntrent.co.uk>

Cc: 046658 North Lincs Green Energy Park < <u>046658@burohappold.onmicrosoft.com</u>> **Subject:** RE: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

Hi,

Thanks for your email,

We have calculated an estimated flow rate for each of the buildings as it is intended to re-use the 51.5l/s incoming flow on other processed of the facility to reduce the water that leaves the facilities.

Please see attached sketch. Could you please confirm if:

• An estimated flow of 4l/s could be accommodated within the existing 225mm foul water pipe that is located in Bellwin Drive?

- An estimated flow of 0.5l/s could be accommodated within the existing foul water network located in Ferry Road West?
- An estimated flow of 0.5l/s could be accommodated within the existing foul water network located in First Avenue?
- We can connect surface water from the Electrolyser building and Gas AGI (yellow buildings) to the existing surface water sewer located within First Avenue at a restricted discharge rate in case infiltration is not suitable on site?

Please let me know if you require further information

Kind Regards

Francis

Francisco Rodriguez (Francis)

Infrastructure Engineer

Buro Happold | Cities Infrastructure Leeds

BURO HAPPOLD

From: Net Dev East <Net.Dev.East@severntrent.co.uk>

Sent: 24 February 2021 15:02

To: Francisco Rodriguez <

Subject: Developer Enquiry Response: Stather Road, Flixborough Our Ref: 8462592

External Email. This email originated from outside Buro Happold.

ST Classification: UNMARKED

Dear Francisco

Please find attached below our Developer Enquiry response letter, along with a sewer record extract and supplementary guidance notes with regard to the above site.

If you have any further queries with regard to our response, please do not hesitate to contact us on the number / email address mentioned below. Please refrain from sending responses to a certain individual directly. Our email address below will ensure that your response is logged and tracked for a response. When responding, please quote our reference number above in all return correspondence.

Regards,

Asset Protection Waste Water

Tel

(reply to net.dev.east@severntrent.co.uk)

Did you know? You can now make full applications online for a variety of our Developer Service offerings including Development Enquiries. Take a look here for more details:

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communications accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

This transmission is confidential and intended solely for the person or organisation to whom it is correctly addressed. If you are not the intended recipient of this transmission, you should not take any action in reliance on it. Further, this transmission may contain confidential design and other information owned by Buro Happold Ltd. You should not copy, distribute, use, offer for sale or hire such information or in any way infringe the design and intellectual property rights of Buro Happold Ltd. It is intended that communication by email from Buro Happold Ltd or its employees is limited to communications connected to the services provided by Buro Happold Ltd. Buro Happold Ltd accepts no liability for any communications not connected to the services it provides. Computer viruses may be transmitted or downloaded onto your computer system via email communication. It is the recipient's responsibility to take any action necessary to prevent computer viruses being transmitted in this way. Accordingly, Buro Happold Ltd disclaims all responsibility which arises directly or indirectly from such transmission of computer viruses. Buro Happold Ltd. Registered in England: 2049511.

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communications accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communications accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally

privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communications accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

ST Classification: UNMARKED

SEVERN TRENT WATER LIMITED

SCA Sewer Modelling Report - Summary of results

Date: 19/01/22

SCA Ref: SCA-0749

Dev Enq Ref: 8462592

Site Address: Land at Energy Green Park, Stather Road, Flixborough

Sewer modelling of the above confirms the following impacts on the public sewerage network:

Flooding Impact – High

Pollution Impact – Very High

Operational Impact – Very High

Further Notes:

Capacity upgrades will be required to accommodate the proposed development.

The flooding impact has been triggered as a result of sewer surcharge during dry weather flow as a result of the proposed development flows

The pollution impact has been triggered as a result of operation of increased spills of an Emergency Overflow

The Operational risk is triggered due to exacerbating storage volume requirements of several SPS in the flow route

This has been referred to our upgrades team for the domestic element to add to our promotions list. The works will be carried out depending on the priority of the schemes on the list. We are not obliged to carry out upgrades for trade effluent.

Senior Evaluation Technician: Asif Mussa

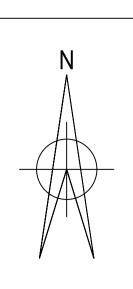
Meeting:

Drainage- Meeting with Severn Trent regarding the results of the sewer modelling exercise

Date:

08/02/2022 13:00-14:00

Attendees:


Asif Mussa – AM (STW) Alan Corner – AC (CWC) Francisco Rodriguez – FR (BH) Nathan George – NG (BH) Colin Byrne – CB (BH)

- BH gave an overview of the scheme and discharge locations for FW from the development to the proposed STW network.
- STW confirmed that the flows from existing buildings have been removed from the model.
- STWL noted that they have used 3.8l/s where flows are pumped from NLGEP. This is an assumed pump rate based on the minimum requirements for adoption. Since NLGEP has 2no. pumped connections and 1no. gravity connection, the actual flow rate modelled by STWL is 10.6l/s.
- STW would need to re-run the model. Noted that this would be outside of the usual 14day period to request updates/re-runs, so likely to incur additional modelling costs. BH requested STWL to review based on timescales for response and availability to meet to discuss modelling output.
- STW highlighted the areas of the model/network where the issues are being reported:
- Emergency CSO at Hollyrood Drive SPS (this was the most significant impact).
 - Very high pollution impact (overflow into ditch)
 - Storage issue
 - Pumping capacity issue
- Burn Road CSO (medium impact)
- Moors Road pumping station (medium impact)
 - Pumping capacity issue
- STW noted that the modelling shows that it is currently spilling at the Hollyrood Drive SPS, so any new flows are likely to result in an impact.
- Discussion if an alternative location to connect to the STWL FW network could be found to avoid discharging through the Hollyrood Drive SPS. Noted that this will be difficult.
- Noted that reinforcement/upgrade works is confirmed by a separate (promotions) team in order of priority. STW noted there could be up to 5-year wait to get to project/site based on current upgrade requirements across the network.

 Discussion about the trade effluent. STWL noted that this will need to be confirmed with their promotions team
Summary of actions:
STWL to confirm the flow rate removed from the modelling.
 BH to review and confirm with Solar 21 if the FW network will remain private upstream of connection to the STW sewer. If so, lower pump rates can be confirmed and included in the STW modelling.
Changes to the DCO:

Appendix F Pı	roposed Storn	nwater Drain	age Layout	

Planning Act 2008
The Infrastructure Planning (Applications: Prescribed forms and Procedure) Regulations 2009
Regulation: 5(2)(o)

THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS. DRAWINGS BASED ON THE FOLLOWING BACKGROUND

INFORMATION: ORDNANCE SURVEY MAPS RECEIVED © CROWN COPYRIGHT AND DATABASE RIGHTS 2021 OS LICENCE 100035409 THE COMPLETENESS OF THE UNDERGROUND SERVICE INFORMATION CANNOT BE GUARANTEED AND THEREFORE

OTHER SERVICES MAY EXIST.

<u>LEGEND</u> **EXISTING**

EXISTING SURFACE WATER (SEVERN TRENT) EXISTING DITCH

PROPOSED SITE BOUNDARY

PROPOSED SURFACE WATER PIPE

PROPOSED SWALE PROPOSED CULVERT

DIVERSION ROUTE PROPOSED DETENTION BASIN (POND)

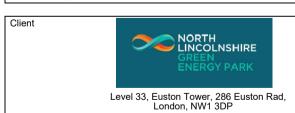
PROPOSED DITCH

ATTENUATION TANK

P1 UPDATED RED LINE BOUNDARY

09.01.2023 FR CB CB 25.02.2022 FR CB CB Date Iss'd Rev'd App'd

P0 ISSUED FOR DCO SUBMISSION


DCO SUBMISSION

INFORMATION

Status of Drawing

1:20000

SCALE BEFORE REDUCTION

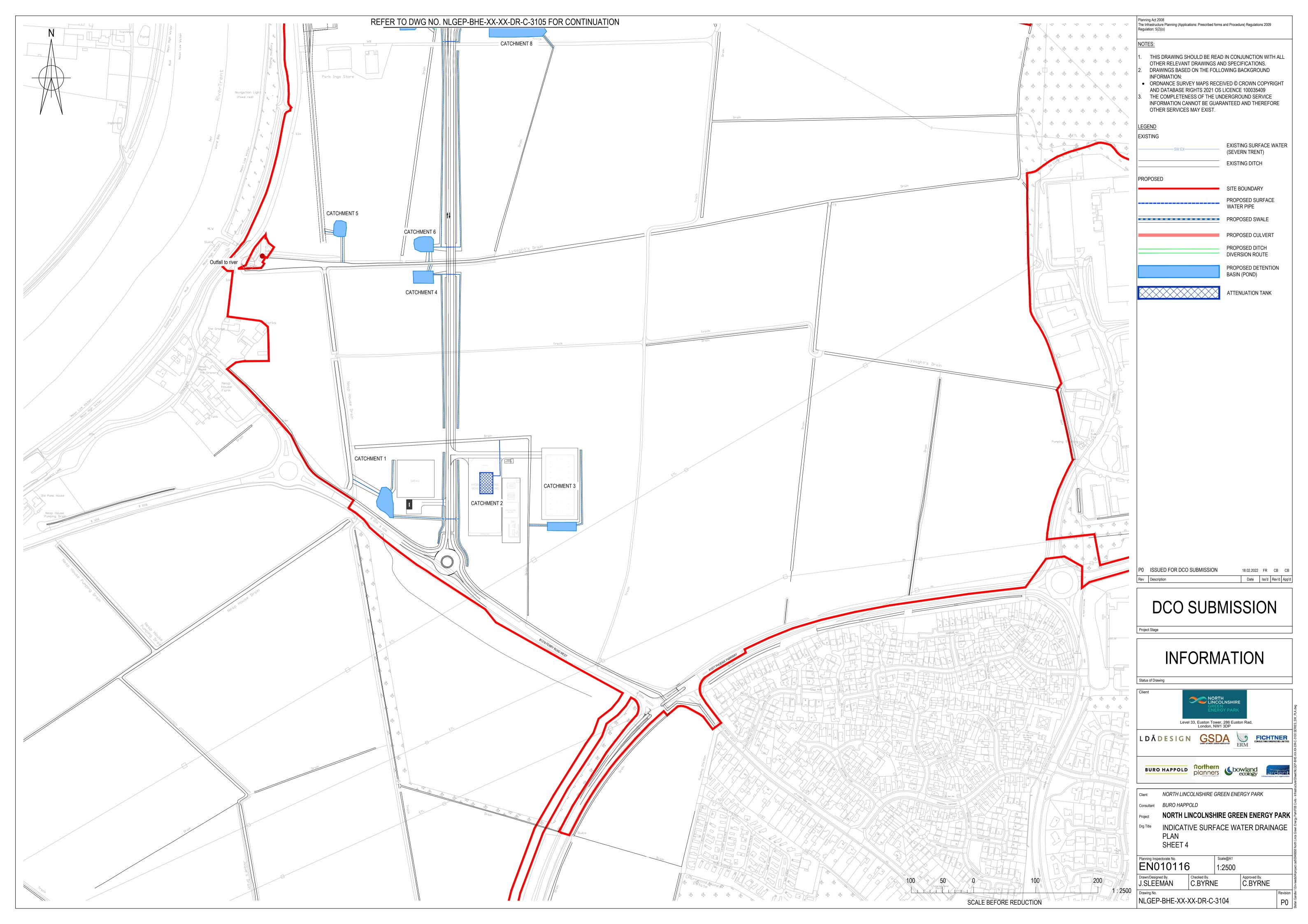
LDĀDESIGN GSDA

GARRY STEMART DIESGRA ASSOCIATES

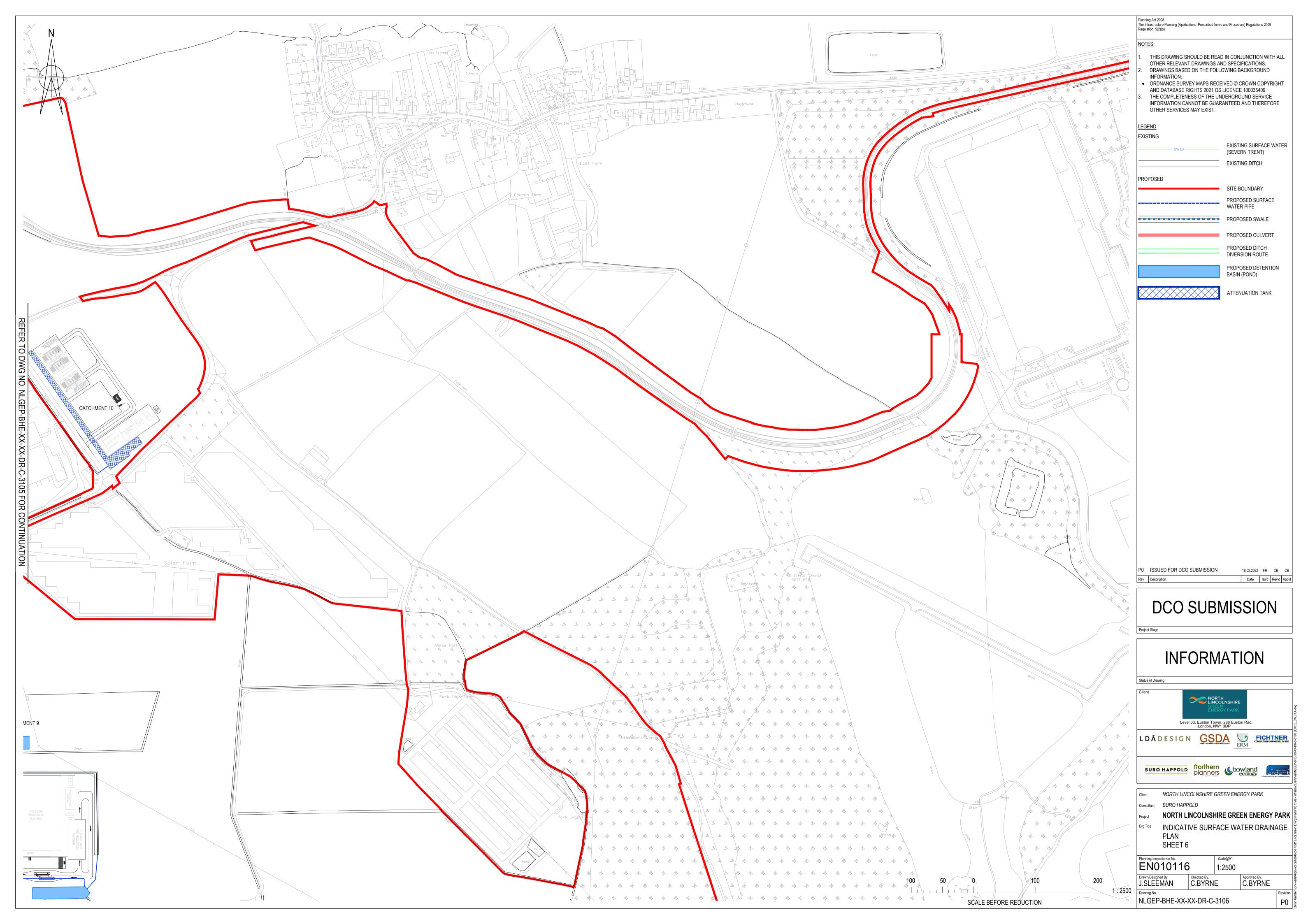
FIGHTNER
CONSULTING ENGINEERS LIMITED

NORTH LINCOLNSHIRE GREEN ENERGY PARK LTD

NORTH LINCOLNSHIRE GREEN ENERGY PARK

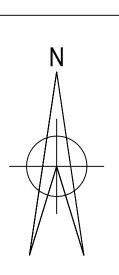

INDICATIVE SURFACE WATER DRAINAGE PLAN OVERALL SHEET

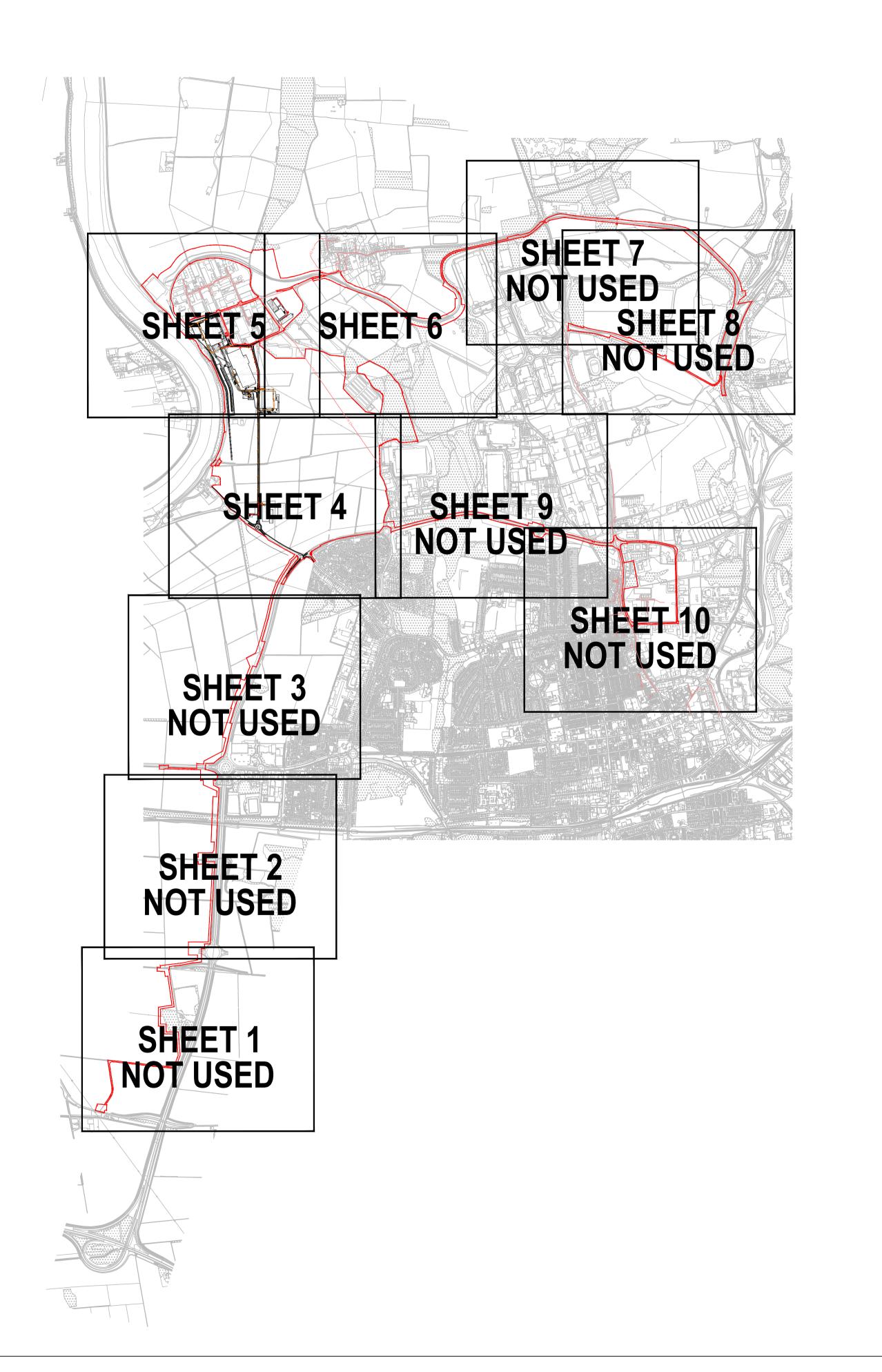
Planning Inspectorate No.
EN010116 Scale@A1 1:20000 Drawn/Designed By.


J.SLEEMAN Checked By.
C.BYRNE Approved By.
C.BYRNE

Drawing No.

NLGEP-BHE-XX-XX-DR-C-3100

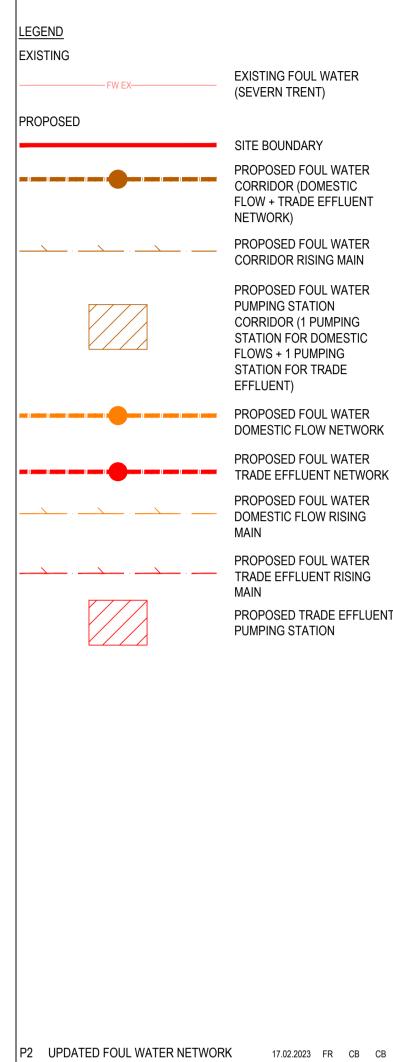

Appendix G SuDS Maintenance Plan


The table below is based on the CIRIA C753 SuDs Manual, 2015.

SUDS COMPONE	NTS MAINTENANCE REQUIREMENTS	
SUDS COMPONENT	Swale	
MAINTENANCE	ACTION	FREQUENCY
Regular	Litter and debris removal	Monthly
maintenance	Amenity grass cutting at 35-50mm	As required
	Grass cut to ditch access and overflows 75- 100mm not to exceed 150mm	Monthly or as required
	Inspect and clear ditch where required, inlets, outlets and overflows	Monthly
Occasional tasks	Remove leaf accumulation	As required
	Cut back overhanging branches to allow dense vegetation growth	As required
Remedial work	Repair erosion, level uneven surfaces or damage by re-turfing or seeding	As required
	Repair or replace inlets, outlets or check dams to design detail	As required
	Remove silt and spread locally, reinstate surface	As required
SUDS COMPONENT	Detention basins	
MAINTENANCE	ACTION	FREQUENCY
Regular	Remove litter and debris	Monthly
maintenance	Cut grass for spillways and access routes	Monthly or as required
	Cut grass – meadow grass in and around	Six monthly (spring –
	basin	before nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly at start then as required
	Inspect inlets, outlets and overflows for blockages and clear if required	Monthly
	Inspect banksides, structures, pipework etc. for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt	Monthly during first
	accumulation, establish appropriate silt removal frequencies	year, then annually or as required
	Check any penstocks or other mechanical devices	Annually

SUDS COMPONE	NTS MAINTENANCE REQUIREMENTS			
SUDS	Swale			
COMPONENT				
MAINTENANCE	ACTION	FREQUENCY		
	Tidy all dead growth before start of growing	Annually		
	season			
	Remove sediment from inlets, outlet and	Annually or as required		
	forebay			
	Manage wetland plants in outlet pool where	Annually		
	provided			
Occasional tasks	Reseed areas of poor vegetation growth	As required		
	Prune and trim any trees and remove cuttings	Every two years or as		
		required		
	Remove sediments from inlets, outlet, forebay	Every 5 years or as		
	and main basin when required	required		
Remedial work	Repair erosion or other damage by reseeding	As required		
	or re-turfing			
	Realignment of rip-rap	As required		
	Repair/rehabilitate inlets, outlets and	As required		
	overflows			
	Relevel uneven surfaces and reinstate design	As required		
	levels			
SUDS	Key design standards for adoption inlets, ou	tlets and connections		
COMPONENT		,		
MAINTENANCE	ACTION	FREQUENCY		
Regular	Litter and debris removal	Monthly		
maintenance	Grass cut 1m around structure at 50mm	Monthly		
	where necessary			
	Remove silt from forebays, aprons or other	Monthly or as required		
	structures if present			
	Inspect and clear inlets, outlets, control	Monthly or as required		
	structures and overflows			
Occasional tasks	Removal of tree or shrub growth within 5m	As required		

Appendix H Proposed Foul Water Drainage Layout						


Planning Act 2008
The Infrastructure Planning (Applications: Prescribed forms and Procedure) Regulations 2009 Regulation: 5(2)(o)

NOTES:

INFORMATION:

THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS. DRAWINGS BASED ON THE FOLLOWING BACKGROUND

 ORDNANCE SURVEY MAPS RECEIVED © CROWN COPYRIGHT AND DATABASE RIGHTS 2021 OS LICENCE 100035409 THE COMPLETENESS OF THE UNDERGROUND SERVICE INFORMATION CANNOT BE GUARANTEED AND THEREFORE OTHER SERVICES MAY EXIST.

DCO SUBMISSION

25.02.2022 FR CB CB Date Iss'd Rev'd App'd

P0 ISSUED FOR DCO SUBMISSION

INFORMATION

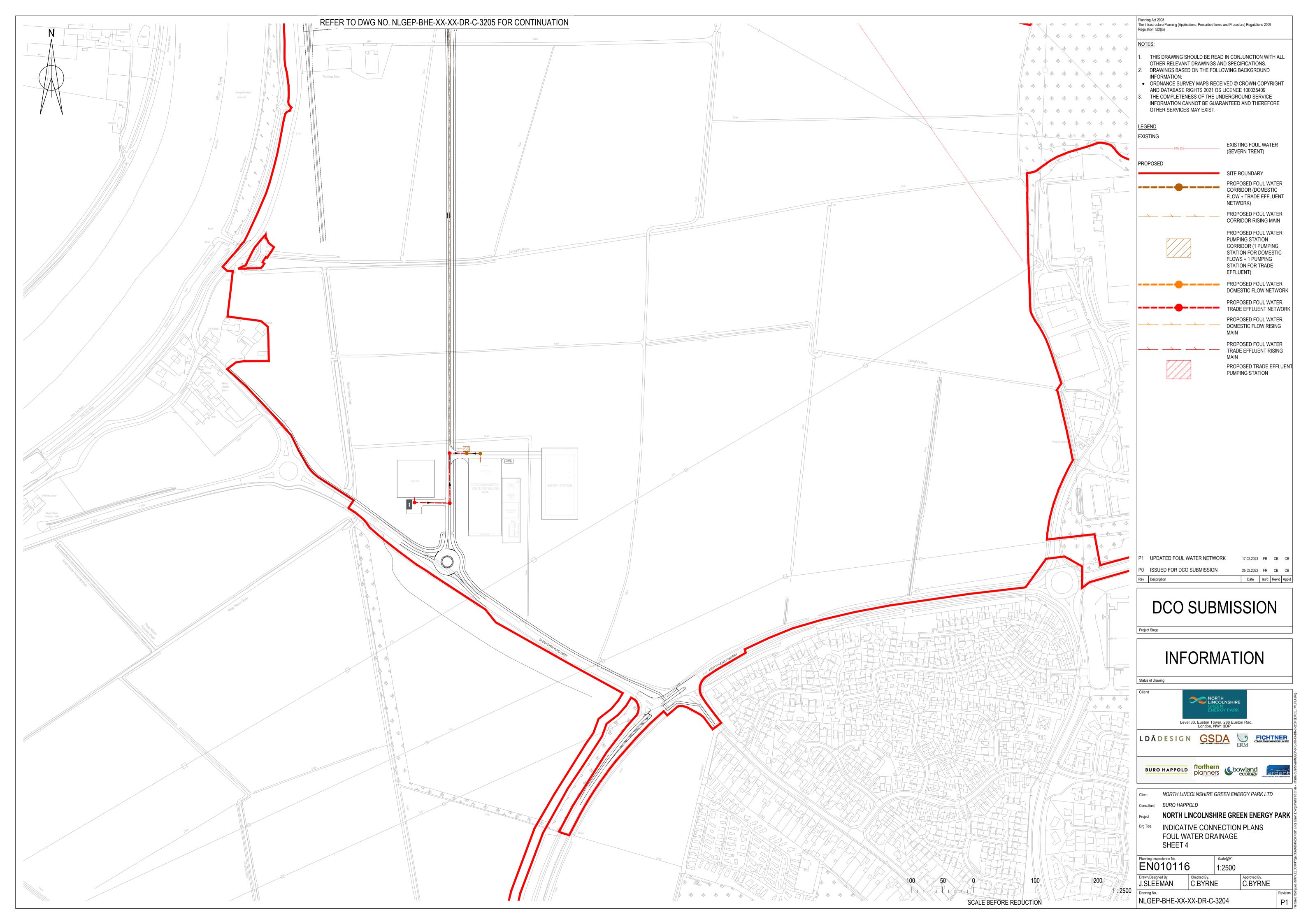
Status of Drawing

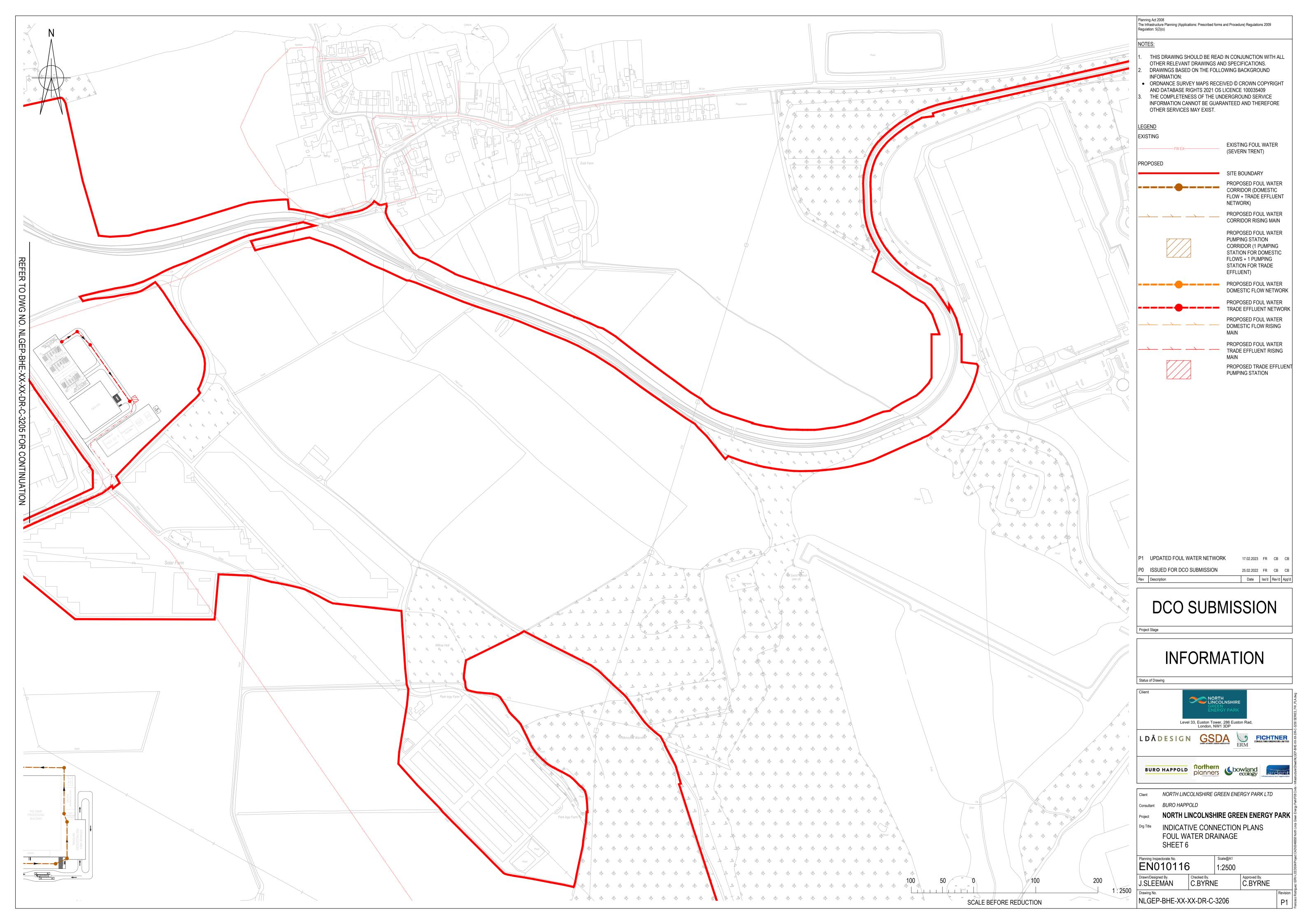
1:20000

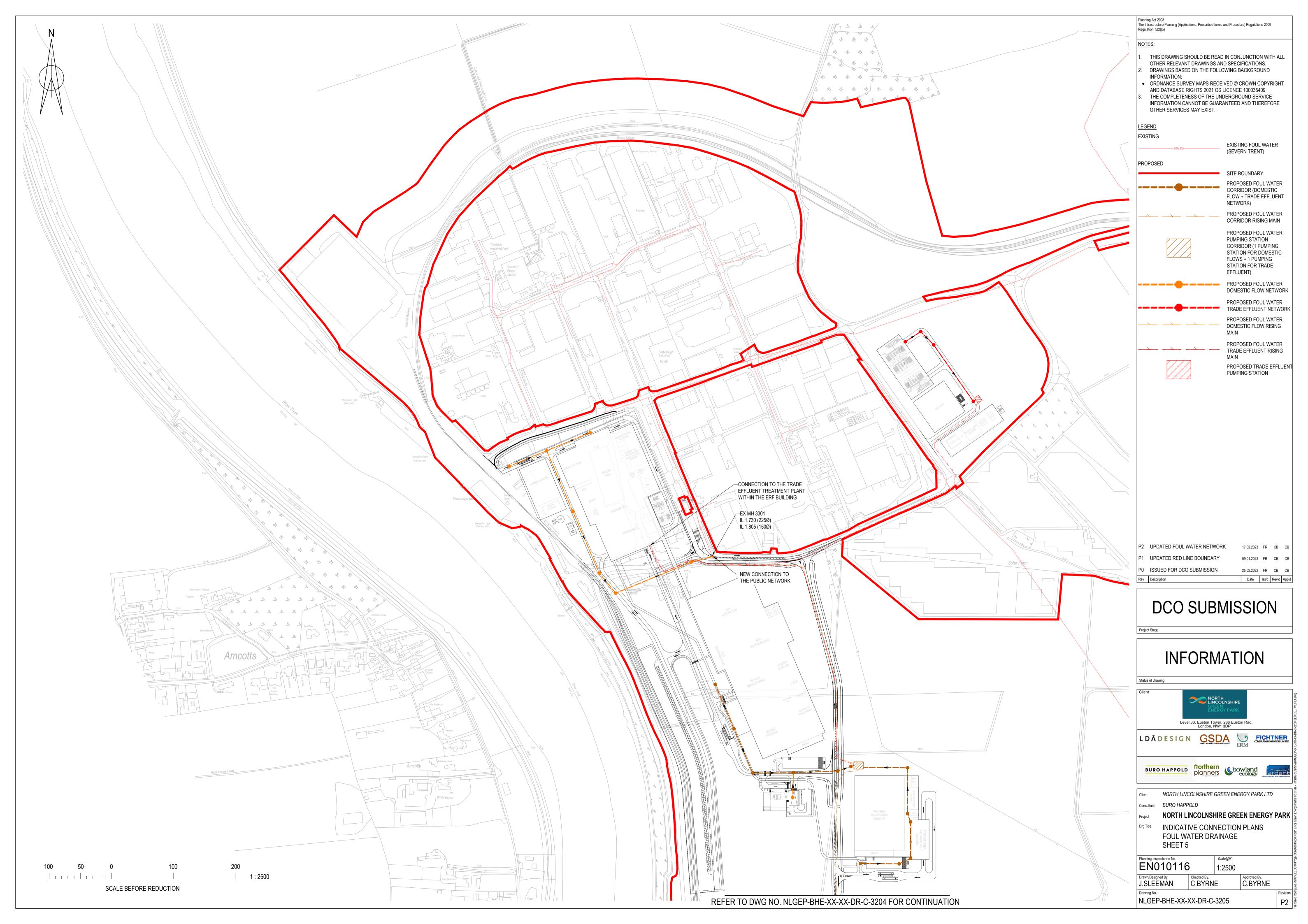
SCALE BEFORE REDUCTION

NORTH LINCOLNSHIRE GREEN ENERGY PARK LTD

OVERALL SHEET


NORTH LINCOLNSHIRE GREEN ENERGY PARK INDICATIVE CONNECTION PLANS FOUL WATER DRAINAGE


Planning Inspectorate No.
EN010116 1:20000 Drawn/Designed By.


J.SLEEMAN C.BYRNE Approved By.
C.BYRNE

NLGEP-BHE-XX-XX-DR-C-3200

Revision P2

Appendix I MicroDrainage Results

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 1

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
s1.000	17.007	0.207	82.0	0.073	5.00	0.0		0.035	3 \=/	500	1:3 Swale	<u> </u>
S1.001	13.508	0.165	81.9	0.015	0.00	0.0		0.035	3 \=/	500	1:3 Swale	ā
S1.002	12.530	0.153	81.9	0.008	0.00	0.0		0.035	3 \=/	500	1:3 Swale	ă
s2.000	31.723	0.159	199.5	0.017	5.00	0.0		0.035	3 \=/	500	1:3 Swale	8
S2.001	44.329	0.222	199.7	0.008	0.00	0.0		0.035	3 \=/	500	1:3 Swale	a
S2.002	9.113	0.046	198.1	0.015	0.00	0.0	0.600		0	150	Pipe/Conduit	0
S2.003	19.660	0.098	200.6	0.022	0.00	0.0		0.035	3 \=/	500	1:3 Swale	•
s3.000	18.666	0.104	179.5	0.056	5.00	0.0		0.035	3 \=/	500	1:3 Swale	8
S3.001	28.457	0.158	180.1	0.031	0.00	0.0		0.035	3 \=/	500	1:3 Swale	8
s3.002	33.517	0.186	180.2	0.040	0.00	0.0		0.035	3 \=/	500	1:3 Swale	8
S4.000	44.745	0.224	199.8	0.081	5.00	0.0		0.035	3 \=/	500	1:3 Swale	<u> </u>
S4.001	44.745	0.224	199.8	0.033	0.00	0.0		0.035	3 \=/	500	1:3 Swale	•
s3.003	23.091	0.077	299.9	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit	8
s1.003	38.148	0.254	150.2	0.061	0.00	0.0		0.035	3 \=/	500	1:3 Swale	•

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	50.00	5.42	2.200	0.073	0.0	0.0	0.0	0.67	95.8	9.8
S1.001	50.00	5.76	1.993	0.087	0.0	0.0	0.0	0.67	95.9	11.8
S1.002	50.00	6.07	1.828	0.095	0.0	0.0	0.0	0.67	95.9	12.9
S2.000	50.00	6.23	2.200	0.017	0.0	0.0	0.0	0.43	61.4	2.3
S2.001	50.00	7.94	2.041	0.025	0.0	0.0	0.0	0.43	61.4	3.3
S2.002	50.00	8.16	1.819	0.039	0.0	0.0	0.0	0.71	12.6	5.3
S2.003	50.00	8.92	1.773	0.062	0.0	0.0	0.0	0.43	61.3	8.4
s3.000	50.00	5.68	2.200	0.056	0.0	0.0	0.0	0.45	64.8	7.6
S3.001	50.00	6.73	2.096	0.087	0.0	0.0	0.0	0.45	64.6	11.8
S3.002	50.00	7.96	1.938	0.127	0.0	0.0	0.0	0.45	64.6	17.1
S4.000	50.00	6.73	2.200	0.081	0.0	0.0	0.0	0.43	61.4	11.0
S4.001	50.00	8.46	1.976	0.114	0.0	0.0	0.0	0.43	61.4	15.4
s3.003	50.00	8.89	1.752	0.241	0.0	0.0	0.0	0.90	63.8	32.6
S1.003	50.00	10.20	1.675	0.458	0.0	0.0	0.0	0.50	70.8	62.1

©1982-2020 Innovyze

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\underline{\text{STORM}}$ SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 1

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Ty	pe Auto	,
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SECT	(mm)		Desig	'n
S1.004	38.148	0.254	150.2	0.054	0.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🐧	
S1.005	43.914	1.300	33.8	0.000	0.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🏺	
S5.000	30.364	0.214	141.9	0.169	5.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🛔	
S5.001	25.653	0.181	141.7	0.168	0.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🍎	
S5.002	19.998	1.300	15.4	0.000	0.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🏺	
S1.006	52.554	0.263	199.8	0.204	0.00	0.0		0.035	3 \=/	500	1:3 Swa	le 🌡	

Network Results Table

PN	Rain	T.C.	US/IL	$\Sigma \text{ I.Area}$	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.004	50.00	11 48	1.421	0.513	0.0	0.0	0.0	0.50	70.8	69.4
S1.004	50.00		1.166	0.513	0.0	0.0	0.0		149.3	
S5.000	50.00	5.99	1.560	0.169	0.0	0.0	0.0	0.51	72.8	22.9
S5.001	50.00	6.83	1.346	0.337	0.0	0.0	0.0	0.51	72.9	45.6
S5.002	50.00	7.04	1.166	0.337	0.0	0.0	0.0	1.55	221.2	45.6
S1.006	50.00	14.21	-0.134	1.053	0.0	0.0	0.0	0.43	61.4«	142.6

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovvze	Network 2020.1.3	

Area Summary for Catchment 1

Pipe Number	PIMP Type	PIMP Name	PIMP	Gross Area (ha)	Imp.	Pipe Total (ha)
Number	1466	Name	(0)	nica (na)	nica (na)	(114)
1.000	Classification	Road	75	0.094	0.071	0.071
	Classification	Grass	30	0.007	0.002	0.073
1.001	Classification	Road	75	0.015	0.012	0.012
	Classification	Grass	30	0.010	0.003	0.015
1.002	Classification	Road	75	0.007	0.005	0.005
	Classification	Grass	30	0.008	0.002	0.008
2.000	Classification	Road	75	0.016	0.012	0.012
	Classification	Grass	30	0.017	0.005	0.017
2.001	Classification	Grass	30	0.025	0.008	0.008
2.002	Classification	Road	75	0.020	0.015	0.015
2.003	Classification	Grass	30	0.011	0.003	0.003
	Classification	Road	75	0.025	0.019	0.022
3.000	Classification	Road	75	0.071	0.053	0.053
	Classification	Grass	30	0.010	0.003	0.056
3.001	Classification	Road	75	0.034	0.026	0.026
	Classification	Grass	30	0.016	0.005	0.031
3.002	Classification	Road	75	0.023	0.017	0.017
	Classification	Road	75	0.009	0.007	0.024
	Classification	Road	75	0.007	0.006	0.030
	Classification	Grass	30	0.012	0.003	0.033
	Classification	Grass	30	0.021	0.006	0.040
4.000	Classification	Road	75	0.074	0.056	0.056
	Classification	Road	75	0.014	0.010	0.066
	Classification	Grass	30	0.023	0.007	0.073
	Classification	Grass	30	0.027	0.008	0.081
4.001	Classification	Road	75	0.014	0.010	0.010
	Classification	Grass	30	0.027	0.008	0.019
	Classification	Grass	30	0.017	0.005	0.023
	Classification	Road	75	0.013	0.010	0.033
3.003	_	-	100	0.000	0.000	0.000
1.003	Classification	Grass	30	0.017	0.005	0.005
	User	-	100	0.056	0.056	0.061
1.004	Classification	Road	75	0.060	0.045	0.045
	Classification	Grass	30	0.023	0.007	0.052
	Classification	Grass	30	0.007	0.002	0.054
1.005	_	-	100	0.000	0.000	0.000
5.000	Classification	Roof	90	0.181	0.163	0.163
	Classification	Grass	30	0.021	0.006	0.169
5.001	Classification	Roof	90	0.179	0.161	0.161
	Classification	Grass	30	0.022	0.007	0.168
5.002	_	-	100	0.000	0.000	0.000
1.006	Classification	Detention Basin	100	0.092	0.092	0.092
	Classification	Grass	30	0.079	0.024	0.116
	Classification	Grass	30	0.284	0.085	0.201
	Classification	Grass	30	0.010	0.003	0.204
				Total	Total	Total
				1.699	1.053	1.053

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria for Catchment 1

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						1999
Site Location	GB	486200	413400	SE	86200	13400
C (1km)					-	-0.025
D1 (1km)						0.330
D2 (1km)						0.312
D3 (1km)						0.298
E (1km)						0.300
F (1km)						2.451
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Storm Duration (mins)						30

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Online Controls for Catchment 1

Orifice Manhole: S8, DS/PN: S1.006, Volume (m³): 63.9

Diameter (m) 0.032 Discharge Coefficient 0.600 Invert Level (m) -0.134

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovvze	Network 2020.1.3	

Storage Structures for Catchment 1

Infiltration Basin Manhole: S8, DS/PN: S1.006

Invert Level (m) -0.134 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 552.1 1.300 924.8

BuroHappold Ltd		Page 7
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

	PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z)	Overflow Act.	Water Level (m)
	FN	Name	SCOIM	reliou	Change	Surcharge	F100u	Overliow	ACC.	(111)
	S1.000	s3	15 Winter	1	+0%					2.244
	S1.001	S4	15 Winter	1	+0%					2.041
	S1.002	S5	15 Winter	1	+0%					1.878
	S2.000	S5	15 Winter	1	+0%					2.225
	S2.001	S5	15 Winter	1	+0%					2.070
	S2.002	S6	15 Winter	1	+0%	30/15 Summe:	r			1.879
	S2.003	s7	15 Winter	1	+0%					1.826
	s3.000	S6	15 Winter	1	+0%					2.248
r					©1982	-2020 Inno	vyze			

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilage
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
S1.000	s3	-0.456	0.000	0.01			9.5	OK	
S1.001	S4	-0.511	0.000	0.01			11.2	OK	
S1.002	S5	-0.557	0.000	0.01			12.1	OK	
S2.000	S5	-0.475	0.000	0.00			2.3	OK	
S2.001	S5	-0.630	0.000	0.00			3.0	OK	
S2.002	S6	-0.090	0.000	0.34			4.2	OK*	
S2.003	s7	-0.874	0.000	0.00			6.2	OK	
S3.000	S6	-0.452	0.000	0.01			7.3	OK	

©1982-2020 Innovyze

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s3.001	s7	15 Winter	1	+0%					2.155
S3.002	S8	15 Winter	1	+0%					2.008
S4.000	S10	15 Winter	1	+0%					2.259
S4.001	S12	15 Winter	1	+0%					2.045
s3.003	S10	15 Winter	1	+0%	30/15 Summer				1.880
S1.003	s7	15 Winter	1	+0%					1.792
S1.004	S15	15 Winter	1	+0%					1.542
S1.005	s7	15 Winter	1	+0%					1.247
S5.000	S14	15 Winter	1	+0%					1.639
S5.001	S15	15 Winter	1	+0%					1.456
S5.002	S15	15 Winter	1	+0%					1.226
S1.006	S8	1440 Winter	1	+0%					0.229

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s3.001	s7	-0.545	0.000	0.01			10.6	OK	
S3.002	S8	-0.692	0.000	0.01			14.7	OK	
S4.000	S10	-0.441	0.000	0.01			10.3	OK	
S4.001	S12	-0.655	0.000	0.01			13.6	OK	
s3.003	S10	-0.172	0.000	0.38			24.2	OK*	
S1.003	s7	-0.383	0.000	0.04			43.8	OK	
S1.004	S15	-0.379	0.000	0.05			47.3	OK	
S1.005	s7	-0.419	0.000	0.02			47.2	OK	
S5.000	S14	-0.521	0.000	0.01			21.9	OK	
S5.001	S15	-0.407	0.000	0.04			39.8	OK	
S5.002	S15	-0.440	0.000	0.01			39.8	OK	
S1.006	S8	-0.937	0.000	0.00			1.3	OK	

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

	US/MH			Climate	First (X)	• •	First (Z)		Water Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S3	15 Winter	30	+40%					2.299
S1.001	S4	15 Winter	30	+40%					2.102
S1.002	S5	15 Winter	30	+40%					1.940
S2.000	S5	15 Winter	30	+40%					2.257
S2.001	S5	15 Winter	30	+40%					2.110
S2.002	S6	15 Winter	30	+40%	30/15 Summe	er			1.987
S2.003	s7	15 Winter	30	+40%					1.915
s3.000	S6	15 Winter	30	+40%					2.305
				@1982	-2020 Inn	OVVZE			

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilage
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	s3	-0.401	0.000	0.03			41.6	OK	
S1.001	S4	-0.450	0.000	0.03			49.7	OK	
S1.002	S5	-0.495	0.000	0.03			54.0	OK	
S2.000	S5	-0.443	0.000	0.01			9.7	OK	
S2.001	S5	-0.590	0.000	0.01			13.5	OK	
S2.002	S6	0.018	0.000	1.23			15.5	SURCHARGED*	
S2.003	s7	-0.785	0.000	0.01			25.0	OK	
s3.000	S6	-0.395	0.000	0.04			31.8	OK	

©1982-2020 Innovyze

BuroHappold Ltd		Page 12
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 1}}$

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s3.001	s7	15 Winter	30	+40%					2.227
S3.002	S8	15 Winter	30	+40%					2.106
S4.000	S10	15 Winter	30	+40%					2.330
S4.001	S12	15 Winter	30	+40%					2.135
s3.003	S10	15 Winter	30	+40%	30/15 Summer				2.074
S1.003	s7	15 Winter	30	+40%					1.904
S1.004	S15	15 Winter	30	+40%					1.661
S1.005	s7	15 Winter	30	+40%					1.332
S5.000	S14	15 Winter	30	+40%					1.733
S5.001	S15	15 Winter	30	+40%					1.586
S5.002	S15	15 Winter	30	+40%					1.304
S1.006	S8	1440 Winter	30	+40%					0.878

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S3.001	s7	-0.473	0.000	0.04			49.2	OK	
S3.002	S8	-0.594	0.000	0.03			66.2	OK	
S4.000	S10	-0.370	0.000	0.05			44.9	OK	
S4.001	S12	-0.565	0.000	0.03			56.9	OK	
s3.003	S10	0.022	0.000	1.21			77.1	SURCHARGED*	
S1.003	s7	-0.271	0.000	0.17			168.1	FLOOD RISK*	
S1.004	S15	-0.260	0.000	0.19			185.6	FLOOD RISK*	
S1.005	s7	-0.334	0.000	0.09			186.0	OK	
S5.000	S14	-0.427	0.000	0.06			95.0	OK	
S5.001	S15	-0.277	0.000	0.18			191.3	FLOOD RISK*	
S5.002	S15	-0.362	0.000	0.06			191.7	OK	
S1.006	S8	-0.288	0.000	0.00			2.1	FLOOD RISK*	

BuroHappold Ltd		Page 13
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank }}{\text{1) for Catchment 1}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

	US/MH			Climate	First (X)	First (Y)			Water Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	s3	15 Winter	100	+40%					2.320
S1.001	S4	15 Winter	100	+40%					2.126
S1.002	S5	15 Winter	100	+40%					1.972
S2.000	S5	15 Winter	100	+40%					2.270
S2.001	S5	15 Winter	100	+40%					2.132
S2.002	S6	15 Winter	100	+40%	30/15 Summe	r			2.052
S2.003	s7	15 Winter	100	+40%					1.951
s3.000	S6	15 Winter	100	+40%					2.329
				©1982	-2020 Inno	DVVZE			

BuroHappold Ltd		Page 14
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank}}{\text{1) for Catchment 1}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	s3	-0.380	0.000	0.05			62.5	OK	
S1.001	S4	-0.426	0.000	0.04			75.0	OK	
S1.002	S5	-0.463	0.000	0.04			81.0	OK	
S2.000	S5	-0.430	0.000	0.02			14.5	OK	
S2.001	S5	-0.568	0.000	0.01			19.9	OK	
S2.002	S6	0.083	0.000	1.64			20.6	SURCHARGED*	
S2.003	s7	-0.749	0.000	0.01			33.5	OK	
s3.000	S6	-0.371	0.000	0.05			47.9	OK	

BuroHappold Ltd		Page 15
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 01/10/2021 12:23	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank}}{\text{1) for Catchment 1}}$

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
s3.001	s7	15 Winter	100	+40%					2.257
S3.002	S8	15 Winter	100	+40%					2.176
S4.000	S10	15 Winter	100	+40%					2.360
S4.001	S12	15 Winter	100	+40%					2.187
s3.003	S10	15 Winter	100	+40%	30/15 Summer				2.159
S1.003	s7	15 Winter	100	+40%					1.941
S1.004	S15	15 Winter	100	+40%					1.702
S1.005	s7	15 Winter	100	+40%					1.363
S5.000	S14	15 Winter	100	+40%					1.769
S5.001	S15	15 Winter	100	+40%					1.637
S5.002	S15	15 Winter	100	+40%					1.336
S1.006	S8	1440 Winter	100	+40%					1.144

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s3.001	s7	-0.443	0.000	0.05			74.2	OK	
S3.002	S8	-0.524	0.000	0.04			96.9	OK	
S4.000	S10	-0.340	0.000	0.08			67.4	OK	
S4.001	S12	-0.513	0.000	0.04			84.5	OK	
s3.003	S10	0.107	0.000	1.60			102.2	SURCHARGED*	
S1.003	s7	-0.234	0.000	0.24			232.0	FLOOD RISK*	
S1.004	S15	-0.219	0.000	0.26			260.0	FLOOD RISK*	
S1.005	s7	-0.303	0.000	0.13			261.0	OK	
S5.000	S14	-0.391	0.000	0.09			142.5	OK	
S5.001	S15	-0.226	0.000	0.26			288.3	FLOOD RISK*	
S5.002	S15	-0.330	0.000	0.09			290.0	OK	
S1.006	S8	-0.022	0.000	0.00			2.4	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 2

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)		SECT	(mm)		Design
G1 000	05 001	0 160	150 0	0 000	F 00		0 0	0 025		100	Di (0	
51.000	25.281	0.169	150.0	0.000	5.00		0.0	0.035	0	100	Pipe/Conduit	@
S1.001	18.759	0.131	143.2	0.000	0.00		0.0	0.035	0	100	Pipe/Conduit	<u> </u>
S1.002	38.143	0.127	300.3	0.688	0.00		0.0	0.035	0	300	Pipe/Conduit	<u> </u>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	7.11	2.100	0.000		0.0	0.0	0.0	0.20	1.6	0.0
S1.001	50.00	8.64	1.931	0.000		0.0	0.0	0.0	0.20	1.6	0.0
S1.002	50.00	10.81	0.912	0.688		0.0	0.0	0.0	0.29	20.7«	93.1

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 2

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	-	-	100	0.000	0.000	0.000
1.001	_	_	100	0.000	0.000	0.000
1.002	Classification	Roof	90	0.010	0.009	0.009
	Classification	Roof	90	0.010	0.009	0.018
	Classification	Roof	90	0.063	0.056	0.075
	Classification	Roof	90	0.000	0.000	0.075
	Classification	Roof	90	0.001	0.001	0.076
	Classification	Roof	90	0.002	0.002	0.078
	Classification	Roof	90	0.036	0.032	0.111
	Classification	Roof	90	0.014	0.013	0.123
	Classification	Roof	90	0.001	0.001	0.124
	Classification	Road	75	0.741	0.555	0.680
	Classification	Roof	90	0.009	0.008	0.688
				Total	Total	Total
				0.888	0.688	0.688

Simulation Criteria for Catchment 2

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
Return Period (years)					100
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Summer Storms					Yes
Winter Storms					Yes
Cv (Summer)					0.750
Cv (Winter)					0.840
Storm Duration (mins)					30

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Online Controls for Catchment 2

Hydro-Brake® Optimum Manhole: S14, DS/PN: S1.002, Volume (m³): 2.2

Unit Reference MD-SHE-0052-1200-0910-1200 Design Head (m) 0.910 Design Flow (1/s) 1.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Diameter (mm) 52 Invert Level (m) 0.912 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.0	1.200	1.4	3.000	2.1	7.000	3.0
0.200	1.1	1.400	1.5	3.500	2.2	7.500	3.1
0.300	1.1	1.600	1.5	4.000	2.4	8.000	3.2
0.400	1.0	1.800	1.6	4.500	2.5	8.500	3.3
0.500	0.9	2.000	1.7	5.000	2.6	9.000	3.4
0.600	1.0	2.200	1.8	5.500	2.7	9.500	3.5
0.800	1.1	2.400	1.9	6.000	2.8		
1.000	1.3	2.600	1.9	6.500	2.9		

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Drainage
Innovyze	Network 2020.1.3	

Storage Structures for Catchment 2

Cellular Storage Manhole: S14, DS/PN: S1.002

Invert Level (m) 0.912 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.97 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	7	756.0			0.0	0.	. 911		0.0			0.0
0.	910	7	756.0			0.0							

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 2}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

<u>- 1</u>		-				
Rainfall 1	Model					FEH
FEH Rainfall Ve	rsion					1999
Site Loc	ation	GB	486200	413400	SE	86200 13400
C	(1km)					-0.025
D1	(1km)					0.330
D2	(1km)					0.312
D3	(1km)					0.298
E	(1km)					0.300
F	(1km)					2.451
Cv (Su	mmer)					0.750
Cv (Wi	nter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S12	15 Summer	1	+0%					2.100
S1.001	S13	15 Summer	1	+0%					1.931
S1.002	S14	1440 Winter	1	+0%	30/60 Summer				1.090

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded	
S1.000	S12	-0.100	0.000	0.00			0.0	OK		
S1.001	S13	-0.100	0.000	0.00			0.0	OK		
			©1	982-20	20 Innov	yze				

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 2}}$

		Surcharged	${\tt Flooded}$			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.002	S14	-0.122	0.000	0.05		1307	1.1	OK	

BuroHappold Ltd		Page 7
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 2}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm)

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

Water

	PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level (m)
	S1.000	S12	15 Summer	30	+40%					2.100
ı	S1.001	S13	15 Summer	30	+40%					1.931
l	S1.002	S14	1440 Winter	30	+40%	30/60 Summer				1.566

BuroHappold Ltd	Page 8	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilage
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 2}}$

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S12	-0.100	0.000	0.00			0.0	OK	
S1.001	S13	-0.100	0.000	0.00			0.0	OK	
S1.002	S14	0.354	0.000	0.05			1.1	SURCHARGED	

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank }}{\text{1) for Catchment 2}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm)

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

Water

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level (m)
S1.000 S1.001 S1.002	S12 S13 S14	15 Summer 15 Summer 1440 Winter	100	+40% +40% +40%	30/60 Summer				2.100 1.931 1.787

BuroHappold Ltd	Page 10	
Camden Mill		
Lower Bristol Road		
Bath		Mirro
Date 25/11/2021 11:51	Designed by Stefan Gandler	Drainage
File 211126 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank}}{\text{1) for Catchment 2}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S12	-0.100	0.000	0.00			0.0	OK	
S1.001	S13	-0.100	0.000	0.00			0.0	OK	
S1.002	S14	0.575	0.000	0.06			1.2	SURCHARGED	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 3

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Base	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)		SECT	(mm)		Design
s1.000	22.917	0.115	199.3	0.130	5.00	0.0	0.035	3 \=/	500	1:3 Swale	<u> </u>
S1.001	32.543	0.163	199.7	0.144	0.00	0.0	0.035	3 \=/	500	1:3 Swale	ă
S1.002	31.620	0.158	200.1	0.141	0.00	0.0	0.035	3 \=/	500	1:3 Swale	ā
S1.003	26.399	0.132	200.0	0.088	0.00	0.0	0.035	3 \=/	500	1:3 Swale	ā
S1.004	64.043	0.532	120.4	0.000	0.00	0.0	0.035	3 \=/	500	1:3 Swale	ē
S1.005	20.865	0.100	208.7	0.091	0.00	0.0	0.035	3 \=/	500	1:3 Swale	ĕ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	5.89	2.300	0.130		0.0	0.0	0.0	0.43	61.5	17.6
S1.001	50.00	7.14	2.185	0.275		0.0	0.0	0.0	0.43	61.4	37.2
S1.002	50.00	8.37	2.022	0.415		0.0	0.0	0.0	0.43	61.3	56.2
S1.003	50.00	9.39	1.864	0.503		0.0	0.0	0.0	0.43	61.3«	68.2
S1.004	50.00	11.31	1.732	0.503		0.0	0.0	0.0	0.55	79.1	68.2
S1.005	50.00	12.14	1.200	0.595		0.0	0.0	0.0	0.42	60.1«	80.5

BuroHappold Ltd	Page 2	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 3

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	Classification	Road	75	0.154	0.116	0.116
	Classification	Grass	30	0.049	0.015	0.130
1.001	Classification	Road	75	0.182	0.136	0.136
	Classification	Grass	30	0.026	0.008	0.144
1.002	Classification	Road	75	0.177	0.133	0.133
	Classification	Grass	30	0.027	0.008	0.141
1.003	Classification	Grass	30	0.023	0.007	0.007
	Classification	Road	75	0.108	0.081	0.088
1.004	_	-	100	0.000	0.000	0.000
1.005	Classification	Grass	30	0.049	0.015	0.015
	Classification	Detention Basin	100	0.064	0.064	0.079
	Classification	Grass	30	0.040	0.012	0.091
				Total	Total	Total
				0.900	0.595	0.595

<u>Simulation Criteria for Catchment 3</u>

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FEH
Return Period (years)			100
FEH Rainfall Version			1999
Site Location		412400 CE	
Site Location	GD 400200	412400 PF	00200 13400
C (1km)			-0.025
D1 (1km)			0.330
D2 (1km)			0.312
D3 (1km)			0.298
E (1km)			0.300
F (1km)			2.451
Summer Storms			Yes
Winter Storms			Yes
Cv (Summer)			0.750
Cv (Winter)			0.840
Storm Duration (mins)			30

BuroHappold Ltd				
Camden Mill				
Lower Bristol Road				
Bath		Micro		
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage		
File NLGEP Stormwater Model.MDX	Checked by	Dialilade		
Innovyze	Network 2020.1.3			

Online Controls for Catchment 3

Orifice Manhole: S4, DS/PN: S1.005, Volume (m³): 88.4

Diameter (m) 0.023 Discharge Coefficient 0.600 Invert Level (m) 1.200

BuroHappold Ltd				
Camden Mill				
Lower Bristol Road				
Bath		Micro		
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage		
File NLGEP Stormwater Model.MDX	Checked by	Drairiage		
Innovyze	Network 2020.1.3			

Storage Structures for Catchment 3

Infiltration Basin Manhole: S4, DS/PN: S1.005

Invert Level (m) 1.200 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 297.3 1.500 636.0

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1 1					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	St	torm			First (X) Surcharge	 First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	1	+0%				2.378
S1.001	S2	15	Winter	1	+0%				2.293
S1.002	S2	15	Winter	1	+0%				2.149
S1.003	S4	15	Winter	1	+0%				2.001
S1.004	S2	15	Winter	1	+0%				1.852
S1.005	S4	1440	Winter	1	+0%				1.576

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 3}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
01 000	0.1	0 222	0 000	0 02			1.0	017	
S1.000	S1	-0.322	0.000	0.03			16.9	OK	
S1.001	S2	-0.392	0.000	0.04			31.8	OK	
S1.002	S2	-0.373	0.000	0.05			44.7	OK	
S1.003	S4	-0.363	0.000	0.06			51.4	OK	
S1.004	S2	-0.480	0.000	0.03			50.7	OK	
S1.005	S4	-1.124	0.000	0.00			0.6	OK	

BuroHappold Ltd					
Camden Mill					
Lower Bristol Road					
Bath		Micro			
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage			
File NLGEP Stormwater Model.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3	•			

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB 4	86200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	St	torm			First (X) Surcharge	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	30	+40%				2.477
S1.001	S2	15	Winter	30	+40%				2.421
S1.002	S2	15	Winter	30	+40%				2.300
S1.003	S4	15	Winter	30	+40%				2.163
S1.004	S2	1440	Winter	30	+40%				2.080
S1.005	S4	1440	Winter	30	+40%				2.080

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilads
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.223	0.000	0.14			73.1	FLOOD RISK*	
S1.001	S2	-0.264	0.000	0.18			152.8	FLOOD RISK*	
S1.002	S2	-0.222	0.000	0.26			220.1	FLOOD RISK*	
S1.003	S4	-0.201	0.000	0.30			256.8	FLOOD RISK*	
S1.004	S2	-0.252	0.000	0.01			11.9	FLOOD RISK*	
S1.005	S4	-0.620	0.000	0.00			1.0	OK	

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1 1					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	St	orm			First (X) Surcharge	 First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	100	+40%				2.522
S1.001	S2	15	Winter	100	+40%				2.471
S1.002	S2	15	Winter	100	+40%				2.357
S1.003	S4	1440	Winter	100	+40%				2.271
S1.004	S2	1440	Winter	100	+40%				2.270
S1.005	S4	1440	Winter	100	+40%				2.270

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	pianiade
Innovyze	Network 2020.1.3	'

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.178	0.000	0.22			109.9	FLOOD RISK*	
S1.001	S2	-0.214	0.000	0.27			231.4	FLOOD RISK*	
S1.002	S2	-0.165	0.000	0.39			332.5	FLOOD RISK*	
S1.003	S4	-0.093	0.000	0.02			15.6	FLOOD RISK*	
S1.004	S2	-0.062	0.000	0.01			14.9	FLOOD RISK*	
S1.005	S4	-0.430	0.000	0.00			1.1	OK	

BuroHappold Ltd	Page 1	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 4

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1		k (mm)	n	HYD SECT	DIA (mm)	Section	Туре		ıto sign
S1.000	48.949	0.245	199.8	0.023	5.00		0.0		0.035	3 \=/	500	1:3	Swale		a
S1.001	66.776	0.334	199.9	0.026	0.00		0.0		0.035	3 \=/	500	1:3	Swale		ē
S1.002	67.044	0.335	200.1	0.033	0.00		0.0		0.035	3 \=/	500	1:3	Swale		ĕ
S1.003	64.503	0.321	200.9	0.032	0.00		0.0		0.035	3 \=/	500	1:3	Swale		ă
															_
S2.000	49.688	0.248	200.4	0.047	5.00		0.0		0.035	3 \=/	500	1:3	Swale		A
S2.001	66.782	0.334	199.9	0.050	0.00		0.0		0.035	3 \=/	500	1:3	Swale		Ă
S2.002	66.782	0.334	199.9	0.060	0.00		0.0		0.035	3 \=/	500	1:3	Swale		0
S2.003	64.366	0.322	199.9	0.056	0.00		0.0		0.035	3 \=/	500	1:3	Swale		ĕ
S2.004	14.030	0.047	298.5	0.018	0.00		0.0	0.600		0	300	Pipe/Co	nduit		Ă
														ľ	_
S1.004	9.119	0.046	198.2	0.010	0.00		0.0		0.035	3 \=/	500	1:3	Swale		<u> </u>
S1.005	11.015	0.662	16.6	0.000	0.00		0.0		0.035	3 \=/	500	1:3	Swale		ĕ
S1.006	13.331	0.067	199.0	0.083	0.00		0.0		0.035	3 \=/	500	1:3	Swale		Ă
														ľ	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	50.00	6.89	2.300	0.023	0.0	0.0	0.0	0.43	61.4	3.2
S1.001	50.00	9.48	2.055	0.050	0.0	0.0	0.0	0.43	61.4	6.7
S1.002	50.00	12.08	1.721	0.083	0.0	0.0	0.0	0.43	61.3	11.2
S1.003	50.00	14.58	1.386	0.115	0.0	0.0	0.0	0.43	61.2	15.6
S2.000	50.00	6.93	2.350	0.047	0.0	0.0	0.0	0.43	61.3	6.3
S2.001	50.00	9.51	2.102	0.096	0.0	0.0	0.0	0.43	61.4	13.1
S2.002	50.00	12.10	1.768	0.157	0.0	0.0	0.0	0.43	61.4	21.2
S2.003	50.00	14.59	1.434	0.212	0.0	0.0	0.0	0.43	61.4	28.8
S2.004	50.00	14.85	1.112	0.231	0.0	0.0	0.0	0.90	64.0	31.3
S1.004	50.00	15.20	1.065	0.356	0.0	0.0	0.0	0.43	61.6	48.2
S1.005	50.00	15.32	1.019	0.356	0.0	0.0	0.0	1.49	212.7	48.2
S1.006	50.00	15.83	0.357	0.439	0.0	0.0	0.0	0.43	61.5	59.5

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovvze	Network 2020.1.3	

Area Summary for Catchment 4

Pipe	PIMP	PIMP		PIMP	Gross	Imp.	Pipe Total
Number	Type	Name		(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification		Road	75	0.022	0.016	0.016
	Classification		Grass	30	0.024	0.007	0.023
1.001	Classification		Road	75	0.020	0.015	0.015
	Classification		Grass	30	0.038	0.011	0.026
1.002	Classification		Road	75	0.023	0.018	0.018
	Classification		Grass	30	0.052	0.016	0.033
1.003	Classification		Road	75	0.021	0.015	0.015
	Classification		Grass	30	0.055	0.017	0.032
2.000	Classification		Road	75	0.021	0.016	0.016
	Classification		Grass	30	0.031	0.009	0.025
	Classification		Road	75	0.019	0.014	0.039
	Classification		Grass	30	0.025	0.007	0.047
2.001	Classification		Road	75	0.020	0.015	0.015
	Classification		Grass	30	0.031	0.009	0.024
	Classification		Road	75	0.018	0.014	0.038
	Classification		Grass	30	0.040	0.012	0.050
2.002	Classification		Road	75	0.023	0.018	0.018
	Classification		Grass	30	0.035	0.011	0.028
	Classification		Road	75	0.021	0.016	0.044
	Classification		Grass	30	0.053	0.016	0.060
2.003	Classification		Road	75	0.020	0.015	0.015
	Classification		Grass	30	0.031	0.009	0.025
	Classification		Road	75	0.019	0.014	0.039
	Classification		Grass	30	0.056	0.017	0.056
2.004	Classification		Road	75	0.009	0.007	0.007
	Classification		Grass	30	0.013	0.004	0.010
	Classification		Road	75	0.008	0.006	0.016
	Classification		Grass	30	0.006	0.002	0.018
1.004	Classification		Road	75	0.009	0.007	0.007
	Classification		Grass	30	0.011	0.003	0.010
1.005	_		-	100	0.000	0.000	0.000
1.006	Classification	Detention	Basin	100	0.059	0.059	0.059
	Classification		Grass	30	0.071	0.021	0.080
	Classification		Grass	30	0.011	0.003	0.083
					Total	Total	Total
					0.916	0.439	0.439

Simulation Criteria for Catchment 4

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovvze	Network 2020.1.3	

Simulation Criteria for Catchment 4

Synthetic Rainfall Details

Rainfall Model Return Period (years)					FEH 100
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Summer Storms					Yes
Winter Storms					Yes
Cv (Summer)					0.750
Cv (Winter)					0.840
Storm Duration (mins)					30

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovyze	Network 2020.1.3	

Online Controls for Catchment 4

Orifice Manhole: S4, DS/PN: S1.006, Volume (m³): 11.0

Diameter (m) 0.027 Discharge Coefficient 0.600 Invert Level (m) 0.357

BuroHappold Ltd			
Camden Mill			
Lower Bristol Road			
Bath		Micro	
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage	
File NLGEP Stormwater Model.MDX	Checked by	Dialilade	
Innovyze	Network 2020.1.3		

Storage Structures for Catchment 4

Infiltration Basin Manhole: S4, DS/PN: S1.006

Invert Level (m) 0.357 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	000	4	104.1	0.	.500	5	523.7	0.	.800	6	500.9

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	•

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	1	+0%					2.330	
S1.001		15 Winter	1	+0%					2.098	
S1.002	S2	15 Winter	1	+0%					1.775	
S1.003	S4	15 Winter	1	+0%					1.446	
S2.000	S2	15 Winter	1	+0%					2.394	
S2.001	S5	15 Winter	1	+0%					2.162	
S2.002	S4	15 Winter	1	+0%					1.842	
S2.003	S8	15 Winter	1	+0%					1.517	
	©1982-2020 Innovyze									

BuroHappold Ltd		Page 7
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 4}}$

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
S1.000	S1	-0.370	0.000	0.01			3.0	OK	
S1.001	S2	-0.457	0.000	0.01			5.6	OK	
S1.002	S2	-0.446	0.000	0.01			8.3	OK	
S1.003	S4	-0.440	0.000	0.01			10.6	OK	
S2.000	S2	-0.306	0.000	0.02			5.8	OK	
S2.001	S5	-0.440	0.000	0.01			10.4	OK	
S2.002	S4	-0.426	0.000	0.02			15.5	OK	
S2.003	S8	-0.417	0.000	0.02			19.4	OK	

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilads
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 4}}$

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.004	s3	15 Winter	1	+0%	30/15 Summer				1.229
S1.004	S2	15 Winter	1	+0%					1.170
S1.005	s3	15 Winter	1	+0%					1.073
S1.006	S4	1440 Winter	1	+0%					0.576

	Surcharged	Flooded			Half Drain	Pipe		
US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
~~	0 100	0 000	0 20			100	OTT	
83	-0.183	0.000	0.32			19.9	OK*	
S2	-1.441	0.000	0.00			30.8	OK	
S3	-0.446	0.000	0.01			30.8	OK	
S4	-0.581	0.000	0.00			0.7	OK	
	Name	US/MH Depth Name (m) S3 -0.183 S2 -1.441 S3 -0.446	Name (m) (m³) S3 -0.183 0.000 S2 -1.441 0.000 S3 -0.446 0.000	US/MH Name Depth (m) Volume (m³) Flow / Cap. S3 -0.183 0.000 0.32 S2 -1.441 0.000 0.00 S3 -0.446 0.000 0.01	US/MH Name Depth (m) Volume (m³) Flow / Cap. Overflow (1/s) S3 -0.183 0.000 0.32 S2 -1.441 0.000 0.00 S3 -0.446 0.000 0.01	US/MH Depth (m) (m³) Cap. (l/s) Time (mins) S3 -0.183 0.000 0.32 S2 -1.441 0.000 0.00 S3 -0.446 0.000 0.01	US/MH Name Depth (m) Volume (m³) Flow / Overflow (1/s) Time (1/s) Flow (1/s) S3 -0.183 0.000 0.32 19.9 S2 -1.441 0.000 0.00 30.8 S3 -0.446 0.000 0.01 30.8	US/MH Name Depth (m) Volume (m³) Flow / Cap. Overflow (1/s) Time (mins) Flow (1/s) Status S3 -0.183 0.000 0.32 19.9 OK* S2 -1.441 0.000 0.00 30.8 OK S3 -0.446 0.000 0.01 30.8 OK

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1 1					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH	Ī	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.00)0 S1	15 Winter	30	+40%					2.367	
S1.00)1 S2	15 Winter	30	+40%					2.156	
S1.00)2 S2	15 Winter	30	+40%					1.844	
S1.00)3 S4	15 Winter	30	+40%					1.524	
S2.00	00 S2	15 Winter	30	+40%					2.448	
S2.00)1 S5	15 Winter	30	+40%					2.239	
S2.00)2 S4	15 Winter	30	+40%					1.936	
S2.00)3 S8	15 Winter	30	+40%					1.619	
				©1982-	2020 Inno	ovyze				

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow /	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
		• •	` '	•		, -,			
S1.000	S1	-0.333	0.000	0.03			12.7	OK	
S1.001	S2	-0.399	0.000	0.03			25.5	OK	
S1.002	S2	-0.377	0.000	0.05			39.4	OK	
S1.003	S4	-0.362	0.000	0.06			49.9	OK	
S2.000	S2	-0.252	0.000	0.07			25.3	FLOOD RISK*	
S2.001	S5	-0.363	0.000	0.06			48.8	OK	
S2.002	S4	-0.332	0.000	0.08			71.9	OK	
S2.003	S8	-0.315	0.000	0.11			89.5	OK	

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.004	s3	15 Winter	30	+40%	30/15 Summer				1.439
S1.004	S2	15 Winter	30	+40%					1.260
S1.005	s3	15 Winter	30	+40%					1.129
S1.006	S4	1440 Winter	30	+40%					0.969

	US/MH	Surcharged Depth	Volume	•	Overflow	Half Drain Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.004	s3	0.027	0.000	1.21			74.2	SURCHARGED*	
S1.004	S2	-1.351	0.000	0.01			116.9	OK	
S1.005	s3	-0.390	0.000	0.04			117.1	OK	
S1.006	S4	-0.188	0.000	0.00			1.2	FLOOD RISK*	

BuroHappold Ltd		Page 12
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1	,					
Rainfall Mode	Τ					FEH
FEH Rainfall Versio	n				1	1999
Site Locatio	n GB	486200	413400	SE	86200 13	3400
C (1km)				-0.	.025
D1 (1km)				0.	.330
D2 (1km)				0.	.312
D3 (1km)				0.	.298
E (1km)				0.	.300
F (1km)				2.	.451
Cv (Summer)				0.	.750
Cv (Winter)				0.	.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	100	+40%					2.385	
S1.001	S2	15 Winter	100	+40%					2.176	
S1.002	S2	15 Winter	100	+40%					1.873	
S1.003	S4	15 Winter	100	+40%					1.555	
S2.000	S2	15 Winter	100	+40%					2.471	
S2.001	S5	15 Winter	100	+40%					2.272	
S2.002	S4	15 Winter	100	+40%					1.974	
s2.003	S8	15 Winter	100	+40%					1.657	
				©1982-	2020 Inno	ovvze				_

BuroHappold Ltd		Page 13
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.315	0.000	0.04			19.1	OK	
S1.001	S2	-0.379	0.000	0.04			38.2	OK	
S1.002	S2	-0.348	0.000	0.07			58.1	OK	
S1.003	S4	-0.331	0.000	0.09			74.1	OK	
S2.000	S2	-0.229	0.000	0.10			38.0	FLOOD RISK*	
S2.001	S5	-0.330	0.000	0.09			73.6	OK	
S2.002	S4	-0.294	0.000	0.13			109.0	FLOOD RISK*	
S2.003	S8	-0.277	0.000	0.16			134.7	FLOOD RISK*	

BuroHappold Ltd		Page 14
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:02	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

									Water
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.004	S3	15 Winter	100	+40%	30/15 Summer				1.533
S1.004	S2	15 Winter	100	+40%					1.299
S1.005	s3	15 Winter	100	+40%					1.152
S1.006	S4	1440 Winter	100	+40%					1.136

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.004	s3	0.121	0.000	1.74			106.9	SURCHARGED*	
S1.004	S2	-1.312	0.000	0.01			171.3	OK	
S1.005	s3	-0.367	0.000	0.06			171.6	OK	
S1.006	S4	-0.021	0.000	0.00			1.3	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 5

PN	Length	Fall	Slope	I.Area	T.E.	Base		n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1,	/s)		SECT	(mm)		Design
	6.415 19.862								3 \=/ 3 \=/			_
S1.002	39.928	0.683	58.5	0.079	0.00	(0.0	0.035	3 \=/	500	1:3 Swale	ĕ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)
S1.000	50.00	10.21	1.835	0.415		0.0	0.0	0.0	0.50	71.0	56.2
S1.001	50.00	10.46	1.792	0.415		0.0	0.0	0.0	1.37	194.7	56.2
S1.002	50.00	11.29	0.792	0.494		0.0	0.0	0.0	0.80	113.5	66.9

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 5

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	Classification	Road	75	0.543	0.407	0.407
	Classification	Grass	30	0.025	0.007	0.415
1.001	-	-	100	0.000	0.000	0.000
1.002	Classification	Detention Basin	100	0.043	0.043	0.043
	Classification	Grass	30	0.120	0.036	0.079
				Total	Total	Total
				0.731	0.494	0.494

Simulation Criteria for Catchment 5

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model Return Period (years) FEH Rainfall Version		FEH 100 1999
Site Location	GB 486200	413400 SE 86200 13400
C (1km)		-0.025
D1 (1km)		0.330
D2 (1km)		0.312
D3 (1km)		0.298
E (1km)		0.300
F (1km)		2.451
Summer Storms		Yes
Winter Storms		Yes
Cv (Summer)		0.750
Cv (Winter)		0.840
Storm Duration (mins)		30

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovyze	Network 2020.1.3	

Online Controls for Catchment 5

Orifice Manhole: S3, DS/PN: S1.002, Volume (m³): 23.0

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 0.792

BuroHappold Ltd					
Camden Mill					
Lower Bristol Road					
Bath		Micro			
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage			
File NLGEP Stormwater Model.MDX	Checked by	Dialilade			
Innovyze	Network 2020.1.3				

Storage Structures for Catchment 5

Tank or Pond Manhole: S3, DS/PN: S1.002

Invert Level (m) 0.792

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 165.5 1.500 434.4

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	·

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FEH
FEH Rainfall Version			1999
Site Location	GB 486200	413400 SE	86200 13400
C (1km)			-0.025
D1 (1km)			0.330
D2 (1km)			0.312
D3 (1km)			0.298
E (1km)			0.300
F (1km)			2.451
Cv (Summer)			0.750
Cv (Winter)			0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

PN	US/MH Name	S.	torm			• •	• •	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	1	+0%					1.943
S1.001	S2	15	Winter	1	+0%					1.854
S1.002	s3	1440	Winter	1	+0%					1.284

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded		
S1.000 S1.001	S1 S2		0.000				37.5 37.5	OK OK			
©1982-2020 Innovyze											

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 5}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.002	s3	-1.009	0.000	0.00			0.6	OK	

BuroHappold Ltd								
Camden Mill								
Lower Bristol Road								
Bath		Micro						
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage						
File NLGEP Stormwater Model.MDX	Checked by	Drainage						
Innovyze	Network 2020.1.3							

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

		FEH
		1999
GB 486200	413400 SE	86200 13400
		-0.025
		0.330
		0.312
		0.298
		0.300
		2.451
		0.750
		0.840
	GB 486200	GB 486200 413400 SE

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

PN	US/MH Name	Storm			First (X) Surcharge	 First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15 Winter	30	+40%				2.058
S1.001	S2	1440 Winter	30	+40%				2.011
S1.002	s3	1440 Winter	30	+40%				2.011

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded		
S1.000	S1	-0.277	0.000	0.17			163.0	FLOOD RISK*			
S1.001	S2	-0.324	0.000	0.00			9.8	OK			
	©1982-2020 Innovyze										

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.002	s3	-0.282	0.000	0.00			0.9	FLOOD RISK*	

BuroHappold Ltd	Page 9	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Mod	lel				FEH
FEH Rainfall Versi	on				1999
Site Locati	on GB	486200	413400	SE	86200 13400
C (1k	m)				-0.025
D1 (1k	m)				0.330
D2 (1k	m)				0.312
D3 (1k	m)				0.298
E (1k	m)				0.300
F (1k	m)				2.451
Cv (Summe	r)				0.750
Cv (Winte	r)				0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

PN	US/MH Name	Storm			First (X) Surcharge	 First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	1440 Winter	100	+40%				2.269
S1.001	S2	1440 Winter	100	+40%				2.269
S1.002	s3	1440 Winter	100	+40%				2.269

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000 S1.001	S1 S2	-0.066 -0.066	0.000					FLOOD RISK* FLOOD RISK*	
				©1982-	2020 Inr	novyze			

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.002	s3	-0.024	0.000	0.00			1.0	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Diali lace
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 6

« - Indicates pipe capacity < flow

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Typ	e Auto Design
	30.336			0.075	5.00	0.0			3 \=/ 3 \=/	500 500	1:3 Swal 1:3 Swal	_
S1.002	30.736 30.809	0.251	122.5	0.016	0.00	0.0		0.035	3 \=/ 3 \=/	500 500	1:3 Swal 1:3 Swal	≘ 🔒
	24.723			0.032	0.00	0.0			3 \=/	500	1:3 Swal	•
S2.001	32.933 32.625 76.607	0.163	200.2	0.034	5.00	0.0		0.035	3 \=/	500	1:3 Swal 1:3 Swal	e 👸
s2.003	21.225 25.918	0.106	200.2	0.052 0.055 0.001	0.00	0.0 0.0 0.0	0.600	0.035	3 \=/	500 300 300	1:3 Swal 1:3 Swal Pipe/Condui	e 👸
S2.005	32.342 18.186	0.162	199.6	0.037	0.00	0.0	0.600	0.035	3 \=/	500	1:3 Swal Pipe/Condui	€ 🔒
	36.845			0.006	0.00	0.0			3 \=/	500	1:3 Swal	
\$1.006 \$1.007 \$1.008	61.433 61.302 61.644	0.307	199.7	0.025 0.028 0.030	0.00 0.00 0.00	0.0 0.0 0.0		0.035	3 \=/ 3 \=/ 3 \=/	500 500 500	1:3 Swal 1:3 Swal 1:3 Swal	e 👸
S1.009				0.033	0.00	0.0			3 \=/	500	1:3 Swal	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	5.92	3.500	0.075	0.0	0.0	0.0	0.55	78.4	10.1
S1.001	50.00	6.85	3.252	0.085	0.0	0.0	0.0	0.55	78.4	11.5
S1.002	50.00			0.101	0.0	0.0	0.0	0.55	78.4	13.7
S1.003	50.00		2.750	0.122	0.0	0.0	0.0	0.55	78.5	16.6
S1.004	50.00		2.498	0.154	0.0	0.0	0.0	0.54	77.6	20.8
S2.000	50.00	6.27	3.500	0.034	0.0	0.0	0.0	0.43	61.3	4.6
S2.001	50.00	7.54	3.335	0.060	0.0	0.0	0.0	0.43	61.3	8.1
S2.002	50.00	10.50	3.172	0.111	0.0	0.0	0.0	0.43	61.3	15.1
S2.003	50.00	11.38	2.789	0.166	0.0	0.0	0.0	0.41	45.7	22.5
S2.004	50.00	11.77	2.683	0.168	0.0	0.0	0.0	1.11	78.5	22.7
S2.005	50.00	13.02	2.553	0.205	0.0	0.0	0.0	0.43	61.4	27.8
S2.006	50.00	13.29	2.391	0.214	0.0	0.0	0.0	1.11	78.4	28.9
S1.005	50.00	14.72	2.300	0.373	0.0	0.0	0.0	0.43	61.3	50.6
S1.006	50.00	17.10	2.116	0.398	0.0	0.0	0.0	0.43	61.3	53.9
S1.007	50.00	19.47	1.809	0.427	0.0	0.0	0.0	0.43	61.4	57.8
S1.008	50.00	21.85	1.502	0.456	0.0	0.0	0.0	0.43	61.3«	61.8
S1.009	50.00	24.23	1.194	0.489	0.0	0.0	0.0	0.43	61.4«	66.2

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 6

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section	Туре	ıto sign
S1.010	51.146	0.256	199.8	0.029	0.00	0.0		0.035	3 \=/	600	1:3	Swale	@
s3.000	39.412	0.252	156.3	0.025	5.00	0.0		0.035	3 \=/	500	1:3	Swale	a
S3.001	71.591	0.458	156.3	0.035	0.00	0.0		0.035	3 \=/	500	1:3	Swale	Ā
S3.002	71.633	0.458	156.4	0.046	0.00	0.0		0.035	3 \=/	500	1:3	Swale	ĕ
s3.003	71.602	0.458	156.3	0.058	0.00	0.0		0.035	3 \=/	500	1:3	Swale	ĕ
S3.004	61.444	0.393	156.3	0.053	0.00	0.0		0.035	3 \=/	600	1:3	Swale	ĕ
S3.005	15.682	0.100	156.8	0.061	0.00	0.0	0.600		0	400	Pipe/Co	nduit	ě
S1.011	16.518	0.083	199.0	0.023	0.00	0.0		0.035	3 \=/	600	1:3	Swale	A
S1.012	9.667	0.415	23.3	0.000	0.00	0.0		0.035	3 \=/	600	1:3	Swale	Ă
S1.013	14.326	0.072	199.0	0.075	0.00	0.0		0.035	3 \=/	500	1:3	Swale	ĕ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.01	10 50.00	26.16	0.887	0.519	0.0	0.0	0.0	0.44	69.4«	70.2
S3.00	50.00	6.35	2.750	0.025	0.0	0.0	0.0	0.49	69.4	3.3
S3.00	50.00	8.80	2.498	0.060	0.0	0.0	0.0	0.49	69.4	8.1
S3.00	50.00	11.25	2.040	0.106	0.0	0.0	0.0	0.49	69.4	14.4
S3.00	50.00	13.70	1.582	0.165	0.0	0.0	0.0	0.49	69.4	22.3
S3.00	50.00	15.76	1.124	0.217	0.0	0.0	0.0	0.50	78.4	29.4
S3.00	50.00	15.93	0.731	0.278	0.0	0.0	0.0	1.50	189.1	37.7
S1.01	11 50.00	26.79	0.631	0.820	0.0	0.0	0.0	0.44	69.5«	111.0
S1.01	12 50.00	26.91	0.548	0.820	0.0	0.0	0.0	1.29	203.1	111.0
S1.01	13 50.00	27.47	0.133	0.895	0.0	0.0	0.0	0.43	61.5«	121.1

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 6

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Road	75	0.093	0.070	0.070
	Classification	Grass	30	0.017	0.005	0.075
1.001	Classification	Road	75	0.008	0.006	0.006
	Classification	Grass	30	0.017	0.005	0.011
1.002	Classification	Road	75	0.014	0.011	0.011
	Classification	Grass	30	0.018	0.005	0.016
1.003	Classification	Road	75	0.021	0.015	0.015
	Classification	Grass	30	0.019	0.006	0.021
1.004	Classification	Road	75	0.034	0.026	0.026
	Classification	Grass	30	0.020	0.006	0.032
2.000	Classification	Road	75	0.014	0.011	0.011
	Classification	Grass	30	0.022	0.007	0.017
	Classification	Road	75	0.013	0.010	0.027
	Classification	Grass	30	0.022	0.007	0.034
2.001	Classification	Grass	30	0.016	0.005	0.005
001	Classification	Road	75	0.010	0.003	0.012
	Classification	Road	75	0.010	0.007	0.012
	Classification	Grass	30	0.010	0.006	0.020
2 002	Classification	Road	75	0.020	0.015	0.015
2.002	Classification	Grass	30	0.020	0.013	0.013
	Classification			0.028		
	Classification	Grass	30 75		0.001	0.025
		Road		0.020	0.015	0.040
2 002	Classification	Grass	30	0.040	0.012	0.052
2.003	Classification	Road	75	0.018	0.013	0.013
	Classification	Grass	30	0.021	0.006	0.020
	Classification	Road	75	0.038	0.028	0.048
0 004	Classification	Grass	30	0.023	0.007	0.055
	Classification	Grass	30	0.004	0.001	0.001
2.005	Classification	Road	75	0.026	0.020	0.020
	Classification	Road	75	0.017	0.013	0.032
	Classification	Grass	30	0.017	0.005	0.037
	Classification	Grass	30	0.029	0.009	0.009
	Classification	Grass	30	0.019	0.006	0.006
1.006	Classification	Road	75	0.017	0.012	0.012
	Classification	Grass	30	0.041	0.012	0.025
1.007	Classification	Road	75	0.021	0.015	0.015
	Classification	Grass	30	0.044	0.013	0.028
1.008	Classification	Road	75	0.020	0.015	0.015
	Classification	Grass	30	0.050	0.015	0.030
1.009	Classification	Road	75	0.021	0.016	0.016
	Classification	Grass	30	0.058	0.017	0.033
1.010	Classification	Road	75	0.020	0.015	0.015
	Classification	Grass	30	0.049	0.015	0.029
3.000	Classification	Road	75	0.015	0.012	0.012
	Classification	Grass	30	0.024	0.007	0.019
	Classification	Grass	30	0.019	0.006	0.025
3.001	Classification	Road	75	0.014	0.011	0.011
	Classification	Grass	30	0.022	0.007	0.017
	Classification	Road	75	0.014	0.011	0.028
	Classification	Grass	30	0.025	0.008	0.035
2 002	Classification	Road	75	0.019	0.014	0.014
3.002						

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovvze	Network 2020.1.3	

Area Summary for Catchment 6

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
	Classification	Grass	30	0.028	0.008	0.023
	Classification	Road	75	0.018	0.013	0.036
	Classification	Grass	30	0.036	0.011	0.046
3.003	Classification	Road	75	0.022	0.017	0.017
	Classification	Grass	30	0.035	0.010	0.027
	Classification	Road	75	0.021	0.016	0.043
	Classification	Grass	30	0.051	0.015	0.058
3.004	Classification	Road	75	0.020	0.015	0.015
	Classification	Grass	30	0.030	0.009	0.024
	Classification	Road	75	0.018	0.013	0.037
	Classification	Grass	30	0.052	0.015	0.053
3.005	Classification	Road	75	0.022	0.017	0.017
	Classification	Road	75	0.024	0.018	0.034
	Classification	Grass	30	0.036	0.011	0.045
	Classification	Grass	30	0.052	0.016	0.061
1.011	Classification	Road	75	0.024	0.018	0.018
	Classification	Grass	30	0.018	0.005	0.023
1.012	_	-	100	0.000	0.000	0.000
1.013	Classification	Detention Basin	100	0.058	0.058	0.058
	Classification	Grass	30	0.057	0.017	0.075
				Total	Total	Total
				1.822	0.895	0.895

<u>Simulation Criteria for Catchment 6</u>

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Mo	del					FEH
Return Period (yea	ırs)					100
FEH Rainfall Vers	sion					1999
Site Locat	ion GB	486200	413400	SE	86200	13400
C (1	.km)				-	-0.025
D1 (1	.km)					0.330
D2 (1	.km)					0.312
D3 (1	.km)					0.298
E (1	.km)					0.300
F (1	.km)					2.451
Summer Sto	rms					Yes

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Synthetic Rainfall Details

Winter Storms Yes
Cv (Summer) 0.750
Cv (Winter) 0.840
Storm Duration (mins) 30

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.M	DX Checked by	Dialilade
Innovyze	Network 2020.1.3	

Online Controls for Catchment 6

Orifice Manhole: S6, DS/PN: S1.013, Volume (m³): 62.4

Diameter (m) 0.034 Discharge Coefficient 0.600 Invert Level (m) 0.133

BuroHappold Ltd		Page 7
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovvze	Network 2020.1.3	

Storage Structures for Catchment 6

Infiltration Basin Manhole: S6, DS/PN: S1.013

Invert Level (m) 0.133 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.	.000	2	262.3	0.	.350	3	36.1	1.	300	5	582.6

BuroHappold Ltd					
Camden Mill					
Lower Bristol Road					
Bath		Micro			
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage			
File NLGEP Stormwater Model.MDX	Checked by	Dialilade			
Innovyze	Network 2020.1.3				

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB 4	86200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

PN	US/MH Name	Storm		Climate Change	First Surch	t (X)	First (Y)	First (Z) Overflow	Overflow Act.	Water Level (m)
										\ /
S1.000	S1	15 Winter	1	+0%						3.549
S1.001	S2	15 Winter	1	+0%						3.304
S1.002	S2	15 Winter	1	+0%						3.057
S1.003	S4	15 Winter	1	+0%						2.810
S1.004	S2	15 Winter	1	+0%						2.565
S2.000	S2	15 Winter	1	+0%						3.537
S2.001	s7	15 Winter	1	+0%						3.383
S2.002	s7	15 Winter	1	+0%						3.235
s2.003	s7	15 Winter	1	+0%						2.879
S2.004	S10	15 Winter	1	+0%	100/15	Summer				2.775
S2.005	S9	15 Winter	1	+0%						2.634
				©198:	2-2020	Innovy	yze			

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 6}}$

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
S1.000	S1	-0.351	0.000	0.01			9.7	OK	
S1.001	S2	-0.448	0.000	0.01			10.7	OK	
S1.002	S2	-0.444	0.000	0.01			12.4	OK	
S1.003	S4	-0.440	0.000	0.01			14.2	OK	
S1.004	S2	-0.433	0.000	0.02			17.2	OK	
S2.000	S2	-0.363	0.000	0.01			4.4	OK	
S2.001	s7	-0.452	0.000	0.01			7.0	OK	
S2.002	s7	-0.437	0.000	0.01			11.4	OK	
S2.003	s7	-0.410	0.000	0.02			16.1	OK	
S2.004	S10	-0.208	0.000	0.21			16.2	OK*	
S2.005	S9	-0.419	0.000	0.02			19.1	OK	

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 6}}$

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.006	S10	15 Winter	1	100	100/15 Summer	_			2.494
					100/13 Summer	=			
S1.005	S 6	15 Winter		+0%					2.413
S1.006	S4	15 Winter	1	+0%					2.230
S1.007	S2	15 Winter	1	+0%					1.922
S1.008	S6	15 Winter	1	+0%					1.615
S1.009	s3	15 Winter	1	+0%					1.306
S1.010	S8	30 Winter	1	+0%					0.988
s3.000	S15	15 Winter	1	+0%					2.779
s3.001	S4	15 Winter	1	+0%					2.543
S3.002	S11	15 Winter	1	+0%					2.098
s3.003	S6	15 Winter	1	+0%					1.651
S3.004	S13	15 Winter	1	+0%					1.195
S3.005	s3	15 Winter	1	+0%	30/360 Winter	-			0.842
S1.011	S2	30 Winter	1	+0%					0.756
S1.012	S5	1440 Winter	1	+0%					0.661
S1.013	S6	1440 Winter	1	+0%					0.661

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.006	S10	-0.197	0.000	0.26			19.5	OK*	
S1.005	S6	-0.387	0.000	0.04			35.4	OK	
S1.006	S4	-0.386	0.000	0.04			35.4	OK	
S1.007	S2	-0.387	0.000	0.04			35.4	OK	
S1.008	S6	-0.387	0.000	0.04			34.8	OK	
S1.009	s3	-0.388	0.000	0.04			34.4	OK	
S1.010	S8	-0.599	0.000	0.02			34.3	OK	
s3.000	S15	-0.471	0.000	0.00			3.3	OK	
s3.001	S4	-0.455	0.000	0.01			6.8	OK	
s3.002	S11	-0.442	0.000	0.01			11.0	OK	
s3.003	S6	-0.431	0.000	0.02			15.7	OK	
S3.004	S13	-0.529	0.000	0.01			19.7	OK	
s3.005	s3	-0.289	0.000	0.17			24.2	OK*	
S1.011	S2	-1.863	0.000	0.00			49.9	OK	
S1.012	S5	-1.257	0.000	0.00			6.6	OK	
S1.013	S6	-0.772	0.000	0.00		1290	1.6	OK	

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	30	+40%					3.610	
S1.001	S2	15 Winter	30	+40%					3.368	
S1.002	S2	15 Winter	30	+40%					3.126	
S1.003	S4	15 Winter	30	+40%					2.885	
S1.004	S2	15 Winter	30	+40%					2.649	
S2.000	S2	15 Winter	30	+40%					3.583	
S2.001	s7	15 Winter	30	+40%					3.445	
S2.002	s7	15 Winter	30	+40%					3.320	
				©1982-	2020 Inno	ovyze				_

BuroHappold Ltd		Page 12
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilads
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.290	0.000	0.06			41.9	FLOOD RISK*	
S1.001	S2	-0.384	0.000	0.04			47.4	OK	
S1.002	S2	-0.375	0.000	0.05			54.8	OK	
S1.003	S4	-0.365	0.000	0.06			63.9	OK	
S1.004	S2	-0.349	0.000	0.07			76.8	OK	
S2.000	S2	-0.317	0.000	0.04			18.9	OK	
S2.001	s7	-0.390	0.000	0.04			32.9	OK	
S2.002	s7	-0.352	0.000	0.06			55.1	OK	

BuroHappold Ltd		Page 13
Camden Mill		
Lower Bristol Road		
Bath		Mirro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

													Water	
	US/MH			Return	Climate	First	: (X)	First	(Y)	First	(Z)	Overflow	Level	
PN	Name	S	torm	Period	Change	Surch	narge	Floo	od	Overf	low	Act.	(m)	
	_													
S2.003	s7		Winter	30	+40%								2.981	
S2.004	S10	15	Winter	30	+40%	100/15	Summer						2.917	
S2.005	S9	15	Winter	30	+40%								2.735	
S2.006	S10	15	Winter	30	+40%	100/15	Summer						2.662	
S1.005	S6	15	Winter	30	+40%								2.530	
S1.006	S4	15	Winter	30	+40%								2.347	
S1.007	S2	15	Winter	30	+40%								2.037	
S1.008	S6	15	Winter	30	+40%								1.728	
S1.009	s3	15	Winter	30	+40%								1.417	
S1.010	S8	1440	Winter	30	+40%								1.254	
s3.000	S15	15	Winter	30	+40%								2.814	
s3.001	S4	15	Winter	30	+40%								2.604	
s3.002	S11	15	Winter	30	+40%								2.175	
s3.003	S6	15	Winter	30	+40%								1.744	
S3.004	S13	15	Winter	30	+40%								1.291	
s3.005	s3	1440	Winter	30	+40%	30/360	Winter						1.254	
S1.011	S2	1440	Winter	30	+40%								1.254	
S1.012	S5	1440	Winter	30	+40%								1.254	
S1.013	S6	1440	Winter	30	+40%								1.254	

	US/MH	Surcharged Depth			Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s2.003	s7	-0.308	0.000	0.10			77.2	OK	
S2.004	S10	-0.066	0.000	0.96			75.3	OK*	
S2.005	S9	-0.318	0.000	0.10			85.3	OK	
S2.006	S10	-0.029	0.000	1.00			75.6	OK*	
S1.005	S6	-0.270	0.000	0.17			148.3	FLOOD RISK*	
S1.006	S4	-0.269	0.000	0.17			146.6	FLOOD RISK*	
S1.007	S2	-0.272	0.000	0.17			145.2	FLOOD RISK*	
S1.008	S6	-0.274	0.000	0.17			142.5	FLOOD RISK*	
S1.009	s3	-0.277	0.000	0.16			139.3	FLOOD RISK*	
S1.010	S8	-0.333	0.000	0.01			12.2	OK	
S3.000	S15	-0.436	0.000	0.01			13.8	OK	
S3.001	S4	-0.394	0.000	0.03			32.2	OK	
S3.002	S11	-0.365	0.000	0.06			53.5	OK	
s3.003	S6	-0.338	0.000	0.08			76.1	OK	
S3.004	S13	-0.433	0.000	0.06			94.4	OK	
S3.005	s3	0.123	0.000	0.04			5.8	SURCHARGED*	
S1.011	S2	-1.365	0.000	0.00			16.7	OK	
S1.012	S5	-0.664	0.000	0.00			15.7	OK	
S1.013	S6	-0.179	0.000	0.00			2.5	FLOOD RISK*	

BuroHappold Ltd		Page 14
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drainage
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	100	+40%					3.636	
S1.001	S2	15 Winter	100	+40%					3.396	
S1.002	S2	15 Winter	100	+40%					3.156	
S1.003	S4	15 Winter	100	+40%					2.917	
S1.004	S2	15 Winter	100	+40%					2.681	
S2.000	S2	15 Winter	100	+40%					3.602	
S2.001	s7	15 Winter	100	+40%					3.469	
S2.002	s7	15 Winter	100	+40%					3.352	
				©1982-	2020 Inno	ovvze				_

BuroHappold Ltd		Page 15
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MD	X Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.264	0.000	0.10			62.9	FLOOD RISK*	
S1.001	S2	-0.356	0.000	0.07			71.3	OK	
S1.002	S2	-0.345	0.000	0.08			82.1	OK	
S1.003	S4	-0.333	0.000	0.09			96.2	OK	
S1.004	S2	-0.317	0.000	0.11			115.8	OK	
S2.000	S2	-0.298	0.000	0.06			28.4	FLOOD RISK*	
S2.001	s7	-0.366	0.000	0.06			48.4	OK	
S2.002	s7	-0.320	0.000	0.10			82.3	OK	

BuroHappold Ltd		Page 16
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

										Water	
	US/MH			Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	St	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
22 002	0.7	1 -	7-7 d	100	. 400					2 051	
S2.003	S7		Winter	100	+40%					3.051	
S2.004	S10		Winter	100		100/15 Summer				3.025	
S2.005	S9	15	Winter	100	+40%					2.786	
S2.006	S10	15	Winter	100	+40%	100/15 Summer				2.743	
S1.005	S6	15	Winter	100	+40%					2.564	
S1.006	S4	15	Winter	100	+40%					2.383	
S1.007	S2	15	Winter	100	+40%					2.075	
S1.008	S6	15	Winter	100	+40%					1.766	
S1.009	s3	15	Winter	100	+40%					1.455	
S1.010	S8	1440	Winter	100	+40%					1.421	
s3.000	S15	15	Winter	100	+40%					2.830	
s3.001	S4	15	Winter	100	+40%					2.627	
s3.002	S11	15	Winter	100	+40%					2.206	
s3.003	S6	15	Winter	100	+40%					1.780	
S3.004	S13	1440	Winter	100	+40%					1.421	
S3.005	s3	1440	Winter	100	+40%	30/360 Winter				1.421	
S1.011	S2	1440	Winter	100	+40%					1.421	
S1.012	S5	1440	Winter	100	+40%					1.421	
S1.013	S6	1440	Winter	100	+40%					1.421	
1											

	US/MH	Surcharged Depth			Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.			(1/s)	Status	Exceeded
s2.003	s7	-0.238	0.000	0.14			100.0	FLOOD RISK*	
S2.004	S10	0.042	0.000	1.20			93.9	SURCHARGED*	
S2.005	S9	-0.267	0.000	0.12			105.9	FLOOD RISK*	
S2.006	S10	0.052	0.000	1.32			99.5	SURCHARGED*	
S1.005	S6	-0.236	0.000	0.24			200.7	FLOOD RISK*	
S1.006	S4	-0.233	0.000	0.24			201.4	FLOOD RISK*	
S1.007	S2	-0.234	0.000	0.24			200.3	FLOOD RISK*	
S1.008	S6	-0.236	0.000	0.23			196.8	FLOOD RISK*	
S1.009	s3	-0.239	0.000	0.23			193.5	FLOOD RISK*	
S1.010	S8	-0.166	0.000	0.01			15.0	FLOOD RISK*	
s3.000	S15	-0.420	0.000	0.02			20.7	OK	
S3.001	S4	-0.371	0.000	0.05			47.6	OK	
S3.002	S11	-0.334	0.000	0.08			79.6	OK	
s3.003	S6	-0.302	0.000	0.12			114.2	OK	
S3.004	S13	-0.303	0.000	0.00			6.7	OK	
S3.005	s3	0.290	0.000	0.06			8.5	SURCHARGED*	
S1.011	S2	-1.198	0.000	0.00			19.6	OK	
S1.012	S5	-0.497	0.000	0.00			18.0	OK	
S1.013	S6	-0.012	0.000	0.00			2.6	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 7

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SECT	(mm)		Design
S1.000	59.310	0.204	290 7	3.395	10.00	0.0		0.035	3 \=/	2000	1:3 Swale	
S1.000	60.167	0.204		0.182	0.00	0.0		0.035	3 \=/		1:3 Swale	
S1.001	12.275	0.033						0.035				
				0.162	0.00	0.0			- ,		1:3 Swale	0
S1.003	48.419	0.169		0.049	0.00	0.0		0.035	3 \=/		1:3 Swale	0
S1.004		0.202		0.282	0.00	0.0		0.035	3 \=/		1:3 Swale	0
S1.005	63.394	0.202	313.8	0.292	0.00	0.0		0.035	3 \=/	2000	1:3 Swale	0
S1.006	26.566	0.087	305.4	0.336	0.00	0.0		0.035	3 \=/	2000	1:3 Swale	a
S1.007	153.785	0.450	341.7	0.000	0.00	0.0		0.035	3 \=/	3900	1:3 Swale	ā
												-
S2.000	74.962	0.360	208.0	0.257	10.00	0.0	0.600		0	700	Pipe/Conduit	a
S2.001	72.614	0.349	208.1	0.292	0.00	0.0	0.600		0	700	Pipe/Conduit	ē
S2.002	63.573	0.306	207.8	0.230	0.00	0.0	0.600		0	700	Pipe/Conduit	ă
S2.003	26.334	0.127	207.4	0.173	0.00	0.0	0.600		0	700	Pipe/Conduit	ē
S2.004	22.276	0.107	208.2	0.040	0.00	0.0	0.600		0	700	Pipe/Conduit	ē
S2.005	58.142	0.280	207.7	0.040	0.00	0.0	0.600		0	700	Pipe/Conduit	Ä
S2.006	42.541	0.205	207.5	0.052	0.00	0.0	0.600		0	700	Pipe/Conduit	ē
S2.007	12.562	0.062	202.6	0.063	0.00	0.0	0.600		0	700	Pipe/Conduit	ē
S2.008	11.908	0.060	198.5	0.031	0.00	0.0		0.035	3 \=/	2000	1:3 Swale	ă
S2.009	126.296	0.245	515.5	0.000	0.00	0.0		0.035	3 \=/	2100	1:3 Swale	ă

Network Results Table

PN	Rain	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	12 36	3.150	3.395	0.0	0.0	0.0	0 42	153.6«	459 8
S1.000	50.00		2.946	3.577	0.0	0.0	0.0		152.5«	
S1.001	50.00		2.742	3.740	0.0	0.0	0.0		135.8«	
S1.002	50.00		2.742	3.789	0.0	0.0	0.0		154.8«	
S1.004	50.00		2.540	4.071	0.0	0.0	0.0		151.9«	
S1.005	50.00		2.338	4.363	0.0	0.0	0.0		147.9«	
S1.006	50.00	23.38	2.136	4.699	0.0	0.0	0.0	0.41	149.9«	636.3
S1.007	50.00	29.70	2.049	4.699	0.0	0.0	0.0	0.41	264.8«	636.3
S2.000	50.00	10.67	3.700	0.257	0.0	0.0	0.0	1.86	713.9	34.8
S2.001	50.00	11.33	3.340	0.550	0.0	0.0	0.0	1.85	713.8	74.4
S2.002	50.00	11.90	2.991	0.780	0.0	0.0	0.0	1.86	714.4	105.6
S2.003	50.00	12.13	2.685	0.953	0.0	0.0	0.0	1.86	715.1	129.0
S2.004	50.00	12.33	2.558	0.993	0.0	0.0	0.0	1.85	713.6	134.4
S2.005	50.00	12.86	2.451	1.032	0.0	0.0	0.0	1.86	714.5	139.8
S2.006	50.00	13.24	2.171	1.084	0.0	0.0	0.0	1.86	714.8	146.8
S2.007	50.00	13.35	1.966	1.147	0.0	0.0	0.0	1.88	723.4	155.4
S2.008	50.00	13.74	1.904	1.179	0.0	0.0	0.0	0.51	186.0	159.6
S2.009	50.00	20.41	1.844	1.179	0.0	0.0	0.0	0.32	120.6«	159.6

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 7

PN	Length (m)	Fall	Slope (1:X)	I.Area		Base Flow (1/s	k) (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
	(1117)	(111)	(1.A)	(IIa)	(1111115)	110W (1/s	, (,		SECI	(11111)		Design
S1.008	26.413	0.132	200.0	1.681	0.00	0.	0	0.035	3 \=/	2000	1:3 Swale	0
S1.009	48.972	0.757	64.7	0.000	0.00	0.	0	0.035	3 \=/	2000	1:3 Swale	ĕ
s3.000	76.350	0.382	199.9	0.363	10.00	0.	0	0.035	3 \=/	600	1:3 Swale	0
s3.001	76.350	0.382	199.9	0.955	0.00	0.	0	0.035	3 \=/	600	1:3 Swale	ĕ
s3.002	36.179	0.181	199.9	0.353	0.00	0.	0	0.035	3 \=/	600	1:3 Swale	Ă
s3.003	51.340	0.257	199.8	0.407	0.00	0.	0 0.600		0	600	Pipe/Conduit	6
s3.004	59.200	0.296	200.0	0.540	0.00	0.	0 0.600		0	600	Pipe/Conduit	ĕ
S3.005	11.855	0.059	200.9	0.158	0.00	0.	0 0.600		0	600	Pipe/Conduit	
S3.006	45.685	0.228	200.4	0.112	0.00	0.	0	0.035	3 \=/	1000	1:3 Swale	ē
s3.007	72.239	0.361	200.0	0.228	0.00	0.	0	0.035	3 \=/	2000	1:3 Swale	ē
S3.008	61.021	0.644	94.8	0.000	0.00	0.	0	0.035	3 \=/	3000	1:3 Swale	ē
S1.010	25.293	0.126	200.0	0.466	0.00	0.	0	0.035	3 \=/	500	1:3 Swale	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.008	50.00	30.00	1.599	7.559	0.0	0.0	0.0	0.50	185.2«	1023.6
S1.009	50.00	30.00	1.467	7.559	0.0	0.0	0.0	0.89	325.7«	1023.6
s3.000	50.00	12.89	4.200	0.363	0.0	0.0	0.0	0.44	69.4	49.2
S3.001	50.00	15.78	3.818	1.318	0.0	0.0	0.0	0.44	69.4«	178.4
S3.002	50.00	17.15	3.436	1.671	0.0	0.0	0.0	0.44	69.3«	226.3
s3.003	50.00	17.65	3.255	2.077	0.0	0.0	0.0	1.72	486.1	281.3
S3.004	50.00	18.22	2.998	2.618	0.0	0.0	0.0	1.72	485.8	354.5
S3.005	50.00	18.34	2.702	2.776	0.0	0.0	0.0	1.71	484.7	375.9
S3.006	50.00	19.96	1.943	2.887	0.0	0.0	0.0	0.47	101.8«	391.0
S3.007	50.00	22.35	1.715	3.115	0.0	0.0	0.0	0.50	185.2«	421.8
s3.008	50.00	23.70	1.354	3.115	0.0	0.0	0.0	0.76	391.9«	421.8
S1.010	50.00	30.00	0.710	11.140	0.0	0.0	0.0	0.43	61.3«	1508.5

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 7

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	Classification	Roof	90	0.300	0.270	0.270
	Classification	Roof	90	0.050	0.045	0.315
	Classification	Roof	90	2.007	1.806	2.121
	Classification	Roof	90	0.012	0.011	2.132
	Classification	Grass	30	0.107	0.032	2.164
	Classification	Road	75	0.293	0.220	2.384
	Classification	Road	75	0.548	0.411	2.795
	Classification	Road	75	0.247	0.185	2.980
	Classification	Roof	90	0.012	0.011	2.991
	Classification	Road	75	0.032	0.024	3.015
	Classification	Roof	90	0.012	0.011	3.026
	Classification	Roof	90	0.200	0.180	3.206
	Classification	Roof	90	0.020	0.018	3.224
	Classification	Roof	90	0.004	0.003	3.227
	Classification	Roof	90	0.011	0.010	3.237
	Classification	Road	75	0.150	0.112	3.350
	Classification	Roof	90	0.046	0.041	3.391
	Classification	Road	75	0.006	0.005	3.395
1.001	Classification	Grass	30	0.304	0.091	0.091
	Classification	Road	75	0.062	0.046	0.138
	Classification	Road	75	0.059	0.044	0.182
1.002	Classification	Grass	30	0.210	0.063	0.063
	Classification	Road	75	0.132	0.099	0.162
1.003	Classification	Road	75	0.065	0.049	0.049
1.004	Classification	Grass	30	0.141	0.042	0.042
	Classification	Road	75	0.063	0.047	0.089
	Classification	Road	75	0.257	0.193	0.282
1.005	Classification	Road	75	0.056	0.042	0.042
	Classification	Grass	30	0.192	0.057	0.099
	Classification	Road	75	0.257	0.193	0.292
1.006	Classification	Grass	30	0.146	0.044	0.044
	Classification	Road	75	0.148	0.111	0.154
	Classification	Road	75	0.242	0.182	0.336
1.007	-	-	100	0.000	0.000	0.000
2.000	Classification	Roof	90	0.229	0.206	0.206
	Classification	Grass	30	0.169	0.051	0.257
2.001	Classification	Roof	90	0.203	0.183	0.183
	Classification	Grass	30	0.366	0.110	0.292
2.002	Classification	Roof	90	0.197	0.178	0.178
	Classification	Grass	30	0.141	0.042	0.220
	Classification	Road	75	0.014	0.010	0.230
2.003	Classification	Roof	90	0.141	0.126	0.126
	Classification	Grass	30	0.127	0.038	0.164
	Classification	Road	75	0.011	0.009	0.173
2.004	Classification	Grass	30	0.107	0.032	0.032
	Classification	Road	75	0.010	0.007	0.040
2.005	Classification	Road	75	0.053	0.040	0.040
	Classification	Grass	30	0.173	0.052	0.052
	Classification	Grass	30	0.210	0.063	0.063
	Classification	Road	75	0.042	0.031	0.031
2.009	-	-	100	0.000	0.000	0.000
		©1982-2020		ovyze		

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 7

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.008	Classification	Grass	30	0.100	0.030	0.030
	Classification	Detention Basin	100	0.745	0.745	0.775
	Classification	Grass	30	0.111	0.033	0.808
	Classification	Roof	90	0.090	0.081	0.889
	${\tt Classification}$	Road	75	0.036	0.027	0.917
	${\tt Classification}$	Grass	30	0.147	0.044	0.961
	${\tt Classification}$	Grass	30	0.287	0.086	1.047
	Classification	Road	75	0.846	0.634	1.681
1.009	-	-	100	0.000	0.000	0.000
3.000	Classification	Grass	30	0.551	0.165	0.165
	Classification	Roof	90	0.220	0.198	0.363
3.001	Classification	Grass	30	0.216	0.065	0.065
	Classification	Roof	90	0.485	0.437	0.501
	Classification	Roof	90	0.504	0.453	0.955
3.002	Classification	Grass	30	0.322	0.096	0.096
	Classification	Roof	90	0.285	0.257	0.353
3.003	Classification	Roof	90	0.452	0.407	0.407
3.004	Classification	Grass	30	0.204	0.061	0.061
	Classification	Roof	90	0.532	0.479	0.540
3.005	Classification	Grass	30	0.052	0.016	0.016
	Classification	Road	75	0.149	0.112	0.127
	Classification	Grass	30	0.102	0.031	0.158
3.006	Classification	Road	75	0.126	0.095	0.095
	Classification	Road	75	0.013	0.009	0.104
	Classification	Grass	30	0.025	0.007	0.112
3.007	Classification	Grass	30	0.157	0.047	0.047
	Classification	Grass	30	0.186	0.056	0.103
	Classification	Road	75	0.166	0.124	0.228
3.008	-	-	100	0.000	0.000	0.000
1.010	Classification	Grass	30	0.435	0.131	0.131
	Classification	Detention Basin	100	0.222	0.222	0.352
	Classification	Grass	30	0.353	0.106	0.458
	Classification	Grass	30	0.012	0.004	0.462
	Classification	Grass	30	0.015	0.004	0.466
				Total	Total	Total
				16.731	11.140	11.140

<u>Simulation Criteria for Catchment 7</u>

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.00	0
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.00	0
Hot Start (mins)	0	Inlet Coefficcient 0.80	0
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.00	0
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 6	0
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	niailiade
Innovyze	Network 2020.1.3	ı

Simulation Criteria for Catchment 7

Synthetic Rainfall Details

D ' C 11 W 1 1					
Rainfall Model					FEH
Return Period (years)					100
FEH Rainfall Version	ı				1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Summer Storms					Yes
Winter Storms					Yes
Cv (Summer)					0.750
Cv (Winter)					0.840
Storm Duration (mins)					30

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Mirro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovvze	Network 2020.1.3	

Online Controls for Catchment 7

Orifice Manhole: S5, DS/PN: S1.008, Volume (m³): 1101.4

Diameter (m) 0.091 Discharge Coefficient 0.600 Invert Level (m) 1.599

Orifice Manhole: S6, DS/PN: S1.010, Volume (m³): 579.5

Diameter (m) 0.099 Discharge Coefficient 0.600 Invert Level (m) 0.710

BuroHappold Ltd		Page 7
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovyze	Network 2020.1.3	

Storage Structures for Catchment 7

Infiltration Basin Manhole: S5, DS/PN: S1.008

Invert Level (m) 1.599 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 6397.7 0.700 7007.0 0.950 7459.1

Infiltration Basin Manhole: S6, DS/PN: S1.010

Invert Level (m) 0.710 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1486.6 0.600 1742.8 1.500 2215.0

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FEH
FEH Rainfall Version			1999
Site Location	GB 486200	413400 SE	86200 13400
C (1km)			-0.025
D1 (1km)			0.330
D2 (1km)			0.312
D3 (1km)			0.298
E (1km)			0.300
F (1km)			2.451
Cv (Summer)			0.750
Cv (Winter)			0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	1	+0%					3.369	
S1.001	S2	15 Winter	1	+0%					3.170	
S1.002	S2	15 Winter	1	+0%					2.979	
S1.003	S4	15 Winter	1	+0%					2.929	
S1.004	S4	15 Winter	1	+0%					2.762	
S1.005	S4	15 Winter	1	+0%					2.562	
S1.006	S6	30 Winter	1	+0%					2.356	
S1.007	s3	30 Winter	1	+0%					2.210	
				©1982-	2020 Inno	ovvze				

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MD	X Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 7}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
S1.000	S1	-0.631	0.000	0.07			303.5	OK	
S1.001	S2	-0.820	0.000	0.05			307.2	OK	
S1.002	S2	-0.521	0.000	0.12			309.2	OK	
S1.003	S4	-0.571	0.000	0.08			307.9	OK	
S1.004	S4	-0.738	0.000	0.06			307.2	OK	
S1.005	S4	-0.438	0.000	0.12			300.4	OK	
S1.006	S6	-0.728	0.000	0.06			300.0	OK	
S1.007	s3	-0.539	0.000	0.07			299.7	OK	

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 7}}$

											Water
	US/MH			Return	Climate	First	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	St	torm	Period	Change	Surcl	narge	Flood	Overflow	Act.	(m)
S2.000			Winter	1	+0%						3.786
S2.001			Winter	1	+0%						3.475
S2.002			Winter	1	+0%						3.152
S2.003	S 56	15	Winter	1	+0%	100/15	Summer				2.883
S2.004	S13	15	Winter	1	+0%	100/15	Summer				2.760
S2.005	S12	15	Winter	1	+0%	100/15	Winter				2.635
S2.006	S15	15	Winter	1	+0%	100/15	Summer				2.362
S2.007	s7	15	Winter	1	+0%	100/15	Summer				2.191
S2.008	S17	15	Winter	1	+0%						2.017
S2.009) S8	15	Winter	1	+0%						1.982
S1.008	S S 5	1440	Winter	1	+0%						1.848
S1.009	S20	1440	Winter	1	+0%						1.480
s3.000	S11	15	Winter	1	+0%						4.300
s3.001	S18	15	Winter	1	+0%						4.014
s3.002	s12	15	Winter	1	+0%						3.650
s3.003			Winter	1	+0%	30/15	Summer				3.515
s3.004			Winter	1	+0%		Summer				3.317
s3.005			Winter	1	+0%		Summer				3.100
S3.006			Winter	1	+0%	30/13	Dananci				2.179
s3.007			Winter	1	+0%						1.899
			Winter		+0%						
S3.008				1							1.471
S1.010) S6	1440	Winter	1	+0%						1.149

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
S2.000	S4	-0.614	0.000	0.04			23.2	OK	
S2.001	S5	-0.565	0.000	0.08			52.1	OK	
S2.002	S10	-0.539	0.000	0.12			74.0	OK	
S2.003	S6	-0.502	0.000	0.18			90.4	OK	
S2.004	S13	-0.498	0.000	0.18			93.8	OK	
S2.005	S12	-0.516	0.000	0.15			96.5	OK	
S2.006	S15	-0.509	0.000	0.17			99.4	OK	
S2.007	s7	-0.475	0.000	0.23			104.1	OK	
S2.008	S17	-0.883	0.000	0.02			105.9	OK	
S2.009	S8	-0.663	0.000	0.04			105.7	OK	
S1.008	S5	-0.701	0.000	0.00			7.8	OK	
S1.009	S20	-0.904	0.000	0.00			7.8	OK	
s3.000	S11	-0.800	0.000	0.01			32.5	OK	
s3.001	S18	-1.086	0.000	0.01			126.8	OK	
s3.002	S12	-1.450	0.000	0.01			156.1	OK	
S3.003	S23	-0.340	0.000	0.39			188.9	OK*	
S3.004	S13	-0.281	0.000	0.55			237.2	OK	
S3.005	S14	-0.202	0.000	0.77			247.5	OK	
s3.006	S25	-1.721	0.000	0.01			254.2	OK	
S3.007	S22	-0.402	0.000	0.11			260.7	OK	

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.	MDX Checked by	niairiade
Innovyze	Network 2020.1.3	1

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 7}}$

	US/MH	Surcharged Depth		Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s3.008	S15	-0.883	0.000	0.02			260.7	OK	
S1.010	S6	-1.061	0.000	0.00			12.4	OK	

BuroHappold Ltd	Page 12	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	30	+40%					3.632	
S1.001	S2	15 Winter	30	+40%					3.440	
S1.002	S2	15 Winter	30	+40%					3.258	
S1.003	S4	15 Winter	30	+40%					3.192	
S1.004	S4	15 Winter	30	+40%					3.028	
S1.005	S4	15 Winter	30	+40%					2.830	
S1.006	S6	15 Winter	30	+40%					2.617	
S1.007	s3	15 Winter	30	+40%					2.420	
				©1982-	2020 Inno	ovvze				

BuroHappold Ltd		Page 13
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)		Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.368	0.000	0.31			1325.8	OK	
S1.001	S2	-0.550	0.000	0.20			1331.3	OK	
S1.002	S2	-0.242	0.000	0.51			1342.0	FLOOD RISK*	
S1.003	S4	-0.308	0.000	0.37			1336.9	OK	
S1.004	S4	-0.472	0.000	0.25			1334.9	OK	
S1.005	S4	-0.170	0.000	0.54			1302.3	FLOOD RISK*	
S1.006	S6	-0.467	0.000	0.25			1289.2	OK	
S1.007	s3	-0.329	0.000	0.29			1199.8	OK	

BuroHappold Ltd		Page 14
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MD	Checked by	Dialilade
Innovyze	Network 2020.1.3	

											Water	
	US/MH			Return	${\tt Climate}$	First	t (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	St	torm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)	
S2.000	S4		Winter	30	+40%						3.885	
S2.001	S5		Winter	30	+40%						3.653	
S2.002	S10		Winter	30	+40%						3.382	
S2.003	S6	15	Winter	30	+40%	100/15	Summer				3.196	
S2.004	S13	15	Winter	30	+40%	100/15	Summer				3.074	
S2.005	S12	15	Winter	30	+40%	100/15	Winter				2.910	
S2.006	S15	15	Winter	30	+40%	100/15	Summer				2.677	
S2.007	s7	15	Winter	30	+40%	100/15	Summer				2.567	
S2.008	S17	1440	Winter	30	+40%						2.303	
S2.009	S8	1440	Winter	30	+40%						2.303	
S1.008	S5	1440	Winter	30	+40%						2.303	
S1.009	S20	1440	Winter	30	+40%						1.828	
s3.000	S11	15	Winter	30	+40%						4.430	
S3.001	S18	15	Winter	30	+40%						4.294	
s3.002	S12	15	Winter	30	+40%						4.253	
s3.003	S23	15	Winter	30	+40%	30/15	Summer				4.232	
S3.004	S13	15	Winter	30	+40%	30/15	Summer				4.066	
s3.005	S14	15	Winter	30	+40%	30/15	Summer				3.572	
s3.006	S25	15	Winter	30	+40%						2.333	
s3.007	S22	15	Winter	30	+40%						2.038	
s3.008	S15		Winter	30	+40%						1.827	
S1.010			Winter	30	+40%						1.825	
21.010	50	_ 110		50	. 100						1.020	1

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.000	S4	-0.515	0.000	0.16			100.6	OK	
S2.000	S5	-0.387	0.000	0.40			252.4	OK	
		-0.309						OK	
S2.002	S10		0.000	0.58			364.0		
S2.003	S6	-0.189	0.000	0.87			443.9		
S2.004	S13	-0.184	0.000	0.89			455.9	OK	
S2.005	S12	-0.241	0.000	0.75			465.5	OK	
S2.006	S15	-0.194	0.000	0.77			457.6	OK	
S2.007	s7	-0.099	0.000	1.00			460.2	OK	
S2.008	S17	-0.597	0.000	0.01			27.9	OK	
S2.009	S8	-0.342	0.000	0.01			27.5	OK	
S1.008	S5	-0.246	0.000	0.00			12.7	FLOOD RISK*	
S1.009	S20	-0.556	0.000	0.00			12.8	OK	
s3.000	S11	-0.670	0.000	0.04			140.7	OK	
s3.001	S18	-0.806	0.000	0.06			506.1	OK	
s3.002	S12	-0.847	0.000	0.02			400.7	OK	
s3.003	S23	0.377	0.000	0.97			472.8	SURCHARGED*	
S3.004	S13	0.468	0.000	1.28			556.4	SURCHARGED	
s3.005	S14	0.270	0.000	1.84			588.4	SURCHARGED	
S3.006	S25	-1.567	0.000	0.03			633.3	OK	
S3.007	S22	-0.263	0.000	0.30			709.9	FLOOD RISK*	
			(©1982-	2020 Inr	novyze			

BuroHappold Ltd		Page 15
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.M	MDX Checked by	niairiade
Innovyze	Network 2020.1.3	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S3.008	S15	-0.527	0.000	0.01			73.6	OK	
		-0.327	0.000	0.01			13.0	ON	
S1.010	S6	-0.385	0.000	0.00			20.9	OK	

BuroHappold Ltd		Page 16
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 $\,$ Additional Flow - % of Total Flow 0.000 $\,$ Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Start Level (mm) 0 Inlet Coefficient 0.800 Hot Start Level (mm) Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

> Number of Input Hydrographs 0 Number of Storage Structures 2Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls $\, {\rm O} \,$ Number of Real Time Controls $\, {\rm O} \,$

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB 48	6200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

300.0 Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 1, 30, 100 Return Period(s) (years) Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	st	torm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
S1.000	S1	15	Winter	100	+40%					3.743	
S1.001	S2	15	Winter	100	+40%					3.556	
S1.002	S2	15	Winter	100	+40%					3.375	
S1.003	S4	15	Winter	100	+40%					3.303	
S1.004	S4	15	Winter	100	+40%					3.142	
S1.005	S4	15	Winter	100	+40%					2.944	
S1.006	S6	15	Winter	100	+40%					2.730	
S1.007	s3	1440	Winter	100	+40%					2.551	
				(©1982-2	020 Inno	vvze				_

BuroHappold Ltd		Page 17
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.257	0.000	0.47			1991.5	FLOOD RISK*	
S1.001	S2	-0.434	0.000	0.31			2004.2	OK	
S1.002	S2	-0.125	0.000	0.77			2023.5	FLOOD RISK*	
S1.003	S4	-0.197	0.000	0.55			2016.0	FLOOD RISK*	
S1.004	S4	-0.358	0.000	0.37			2014.4	OK	
S1.005	S4	-0.056	0.000	0.82			1980.1	FLOOD RISK*	
S1.006	S6	-0.354	0.000	0.38			1963.1	OK	
S1.007	s3	-0.198	0.000	0.04			145.3	FLOOD RISK*	

BuroHappold Ltd		Page 18
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

													Water	
	US/MH			Return	Climate	First	t (X)	First (Y)	First	(Z)	Overflow	Level	
PN	Name	S.	torm	Period	Change	Surch	narge	Flood	L	Overf	low	Act.	(m)	
S2.000	S4	15	Winter	100	+40%								3.930	
S2.001	S5	15	Winter	100	+40%								3.768	
S2.002	S10	15	Winter	100	+40%								3.674	
S2.003	S6	15	Winter	100	+40%	100/15	Summer						3.537	
S2.004	S13	15	Winter	100	+40%	100/15	Summer						3.374	
S2.005	S12	15	Winter	100	+40%	100/15	Winter						3.199	
S2.006	S15	15	Winter	100	+40%	100/15	Summer						2.976	
S2.007	s7	15	Winter	100	+40%	100/15	Summer						2.775	
S2.008	S17	1440	Winter	100	+40%								2.504	
S2.009	S8	1440	Winter	100	+40%								2.504	
S1.008	S5	1440	Winter	100	+40%								2.504	
S1.009	S20	1440	Winter	100	+40%								2.078	
S3.000	S11	15	Winter	100	+40%								4.633	
S3.001	S18	15	Winter	100	+40%								4.587	
S3.002	S12	15	Winter	100	+40%								4.539	
S3.003	S23	15	Winter	100	+40%	30/15	Summer						4.506	
S3.004	S13	15	Winter	100	+40%	30/15	Summer						4.354	
S3.005	S14	15	Winter	100	+40%	30/15	Summer						3.724	
S3.006	S25	15	Winter	100	+40%								2.368	
S3.007	S22	1440	Winter	100	+40%								2.101	
S3.008	S15	1440	Winter	100	+40%								2.082	
S1.010	S6	1440	Winter	100	+40%								2.074	
														1

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
S2.000	S4	-0.470	0.000	0.24			151.2	OK	
S2.001	S5	-0.272	0.000	0.57			364.6	OK	
S2.002	S10	-0.017	0.000	0.75			472.1	OK	
s2.003	S6	0.152		1.11			563.9		
S2.004	S13	0.116	0.000	1.14			581.7	SURCHARGED	
S2.005	S12	0.048	0.000	0.93			578.6	SURCHARGED	
S2.006	S15	0.105	0.000	0.98			587.7	SURCHARGED	
S2.007	s7	0.109	0.000	1.32			608.3	SURCHARGED	
S2.008	S17	-0.396	0.000	0.01			35.9	OK	
S2.009	S8	-0.141	0.000	0.01			34.8	FLOOD RISK*	
S1.008	S5	-0.045	0.000	0.00			12.9	FLOOD RISK*	
S1.009	S20	-0.306	0.000	0.00			13.2	OK	
S3.000	S11	-0.467	0.000	0.06			207.3	OK	
s3.001	S18	-0.513	0.000	0.07			631.2	OK	
s3.002	S12	-0.561	0.000	0.03			519.0	OK	
s3.003	S23	0.651	0.000	1.12			546.1	SURCHARGED*	
S3.004	S13	0.756	0.000	1.47			635.5	SURCHARGED	
s3.005	S14	0.422	0.000	2.16			693.9	SURCHARGED	
s3.006	S25	-1.532	0.000	0.03			770.9	OK	
S3.007	S22	-0.200	0.000	0.04			96.7	FLOOD RISK*	
			(©1982-	2020 Inr	novyze			

BuroHappold Ltd		Page 19
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:03	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

		Surcharged	${\tt Flooded}$			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s3.008	S15	_0 272	0.000	0 01			01 1	FLOOD RISK*	
33.000	313	-0.272	0.000	0.01			21.1	FLOOD KISK.	
S1.010	S6	-0.136	0.000	0.00			23.3	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 8

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)		SECT	(mm)		Design
g1 000	62.656	0 212	200 0	0.519	5.00		0.0		0 025	2 \-/	500	1:3 Swale	
									0.035				_
	58.320			0.452	0.00		0.0		0.035		500	1:3 Swale	_
S1.002	74.232	0.371	200.1	0.200	0.00		0.0		0.035	3 \=/	500	1:3 Swale	@
S1.003	50.857	0.254	200.2	0.244	0.00		0.0		0.035	3 \=/	500	1:3 Swale	@
S1.004	50.857	0.203	250.0	0.000	0.00		0.0	0.600		0	750	Pipe/Conduit	ě
S1.005	19.021	0.076	250.0	0.079	0.00		0.0	0.600		0	750	Pipe/Conduit	a
S1.006	18.844	0.941	20.0	0.000	0.00		0.0	0.600		0	750	Pipe/Conduit	a
S1.007	19.847	0.136	145.9	0.570	0.00		0.0		0.035	3 \=/	500	1:3 Swale	0

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	7.43	3.400	0.519	0.0	0.0	0.0	0.43	61.3«	70.3
S1.001	50.00	9.68	3.087	0.971	0.0	0.0	0.0	0.43	61.4«	131.4
S1.002	50.00	12.56	2.795	1.171	0.0	0.0	0.0	0.43	61.3«	158.5
S1.003	50.00	14.53	2.424	1.414	0.0	0.0	0.0	0.43	61.3«	191.5
S1.004	50.00	15.01	2.170	1.414	0.0	0.0	0.0	1.77	779.9	191.5
S1.005	50.00	15.19	1.967	1.494	0.0	0.0	0.0	1.77	779.9	202.3
S1.006	50.00	15.24	1.891	1.494	0.0	0.0	0.0	6.27	2770.1	202.3
S1.007	50.00	15.89	0.950	2.063	0.0	0.0	0.0	0.50	71.8«	279.4

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Drairiage
Innovvze	Network 2020.1.3	

Area Summary for Catchment 8

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Grass	30	0.037	0.011	0.011
	Classification	Roof	90	0.534	0.480	0.491
	Classification	Grass	30	0.092	0.028	0.519
1.001	Classification	Grass	30	0.041	0.012	0.012
	Classification	Roof	90	0.488	0.439	0.452
1.002	Classification	Roof	90	0.053	0.047	0.047
	Classification	Roof	90	0.008	0.007	0.054
	Classification	Road	75	0.066	0.050	0.104
	Classification	Grass	30	0.037	0.011	0.115
	Classification	Grass	30	0.180	0.054	0.169
	Classification	Roof	90	0.011	0.010	0.179
	Classification	Grass	30	0.071	0.021	0.200
1.003	Classification	Roof	90	0.179	0.161	0.161
	Classification	Road	75	0.036	0.027	0.188
	Classification	Grass	30	0.035	0.011	0.199
	Classification	Grass	30	0.060	0.018	0.217
	Classification	Grass	30	0.089	0.027	0.244
1.004	_	-	100	0.000	0.000	0.000
1.005	Classification	Road	75	0.066	0.050	0.050
	Classification	Grass	30	0.023	0.007	0.057
	Classification	Grass	30	0.032	0.010	0.066
	Classification	Grass	30	0.042	0.013	0.079
1.006	_	-	100	0.000	0.000	0.000
1.007	Classification	Detention Basin	100	0.161	0.161	0.161
	Classification	Road	75	0.291	0.219	0.380
	Classification	Grass	30	0.146	0.044	0.423
	Classification	Grass	30	0.041	0.012	0.436
	Classification	Grass	30	0.446	0.134	0.570
				Total	Total	Total
				3.267	2.063	2.063

Simulation Criteria for Catchment 8

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999

Innovyze	Network 2020.1.3	<u> </u>
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
Bath		Micro
Lower Bristol Road		
Camden Mill		
BuroHappold Ltd		Page 3

Synthetic Rainfall Details

Site Locatio	n GB	486200	413400	SE	86200	13400
C (1km	1)				-	-0.025
D1 (1km	1)					0.330
D2 (1km	1)					0.312
D3 (1km	1)					0.298
E (1km	1)					0.300
F (1km	1)					2.451
Summer Storm	ıs					Yes
Winter Storm	ıs					Yes
Cv (Summer	.)					0.750
Cv (Winter	.)					0.840
Storm Duration (mins)					30

BuroHappold Ltd					
Camden Mill					
Lower Bristol Road					
Bath		Mirro			
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage			
File NLGEP Stormwater Model.MDX	Checked by	Dialilade			
Innovyze	Network 2020.1.3				

Online Controls for Catchment 8

Orifice Manhole: S5, DS/PN: S1.007, Volume (m³): 7.9

Diameter (m) 0.042 Discharge Coefficient 0.600 Invert Level (m) 0.950

BuroHappold Ltd					
Camden Mill					
Lower Bristol Road					
Bath		Micro			
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage			
File NLGEP Stormwater Model.MDX	Checked by	Drairiage			
Innovvze	Network 2020.1.3	•			

Storage Structures for Catchment 8

Infiltration Basin Manhole: S5, DS/PN: S1.007

Invert Level (m) 0.950 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1043.8 1.500 1622.8

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1 1					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S2	15 Winter	1	+0%					3.558
S1.001	S4	15 Winter	1	+0%					3.283
S1.002	s3	15 Winter	1	+0%					3.001
S1.003	S4	15 Winter	1	+0%					2.636
S1.004	S5	15 Winter	1	+0%					2.379
S1.005	S2	15 Winter	1	+0%	100/15 Winter				2.200
S1.006	s3	15 Winter	1	+0%					2.027
S1.007	S5	1440 Winter	1	+0%					1.360
				©1982	-2020 Innovy	ze			

	BuroHappold Ltd		Page 7
	Camden Mill		
	Lower Bristol Road		
	Bath		Micro
ı	Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
	File NLGEP Stormwater Model.MDX	Checked by	Dialilade
İ	Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 8}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S2	-0.342	0.000	0.07			62.7	OK	
S1.001	S4	-0.304	0.000	0.12			102.5	OK	
S1.002	s3	-0.294	0.000	0.13			111.7	FLOOD RISK*	
S1.003	S4	-0.488	0.000	0.07			123.8	OK	
S1.004	S5	-0.541	0.000	0.17			114.2	OK	
S1.005	S2	-0.517	0.000	0.21			114.9	OK	
S1.006	s3	-0.614	0.000	0.08			115.1	OK	
S1.007	S5	-1.090	0.000	0.00			2.3	OK	

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S2	15 Winter	30	+40%					3.717
S1.001	S4	15 Winter	30	+40%					3.489
S1.002	S3	15 Winter	30	+40%					3.211
S1.003	S4	15 Winter	30	+40%					2.843
S1.004	S5	15 Winter	30	+40%					2.678
S1.005	S2	15 Winter	30	+40%	100/15 Winter				2.532
S1.006	S3	15 Winter	30	+40%					2.187
S1.007	S5	1440 Winter	30	+40%					2.105
				©1982	-2020 Innovy	100			
				OT 207.	-ZUZU IIIIUVV	/ ᠘ 匸			

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S2	-0.183	0.000	0.33			277.7	FLOOD RISK*	
S1.001	S4	-0.098	0.000	0.57			482.9	FLOOD RISK*	
S1.002	s3	-0.084	0.000	0.60			513.8	FLOOD RISK*	
S1.003	S4	-0.281	0.000	0.29			553.9	FLOOD RISK*	
S1.004	S5	-0.242	0.000	0.75			497.0	OK	
S1.005	S2	-0.185	0.000	0.92			501.7	OK	
S1.006	s3	-0.454	0.000	0.33			500.6	OK	
S1.007	S5	-0.345	0.000	0.00			3.9	OK	

BuroHappold Ltd		Page 10
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S2	15 Winter	100	+40%					3.780
S1.001	S4	15 Winter	100	+40%					3.567
S1.002	s3	15 Winter	100	+40%					3.293
S1.003	S4	15 Winter	100	+40%					2.986
S1.004	S5	15 Winter	100	+40%					2.916
S1.005	S2	15 Winter	100	+40%	100/15 Winter				2.753
S1.006	s3	1440 Winter	100	+40%					2.396
S1.007	S5	1440 Winter	100	+40%					2.395
				©1982	-2020 Innovy	ze			

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S2	-0.120	0.000	0.49			418.4	FLOOD RISK*	
S1.001	S4	-0.020	0.000	0.86			730.0	FLOOD RISK*	
S1.002	s3	-0.002	0.000	0.91			776.1	FLOOD RISK*	
S1.003	S4	-0.138	0.000	0.44			829.6	FLOOD RISK*	
S1.004	S5	-0.004	0.000	0.91			604.1	OK	
S1.005	S2	0.036	0.000	1.12			606.4	SURCHARGED	
S1.006	s3	-0.245	0.000	0.03			46.4	OK	
S1.007	S5	-0.055	0.000	0.00			4.4	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 9

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	n	HYD	DIA	Section	Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)		SECT	(mm)			Design
S1.000	44.474	0.148	300.5	0.034	5.00		0.0	0.035	3 \=/	500	1:3 S	wale	•
S1.001	44.474	0.148	300.5	0.019	0.00					500	1:3 S	wale	ĕ
S1.002	44.474	0.148	300.5	0.018	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ě
S1.003	44.474	0.148	300.5	0.018	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ŏ
S1.004	51.377	0.171	300.5	0.020	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ŏ
S1.005	51.377	0.171	300.5	0.023	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ĕ
S1.006	15.196	0.051	298.0	0.022	0.00		0.0	0.035	0	300	Pipe/Con	duit	ĕ
S2.000	44.886	0.156	287.7	0.044	5.00		0.0	0.035	3 \=/	500	1:3 S	wale	<u> </u>
S2.001	44.886	0.156	287.7	0.037	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ē
S2.002	44.886	0.156	287.7	0.035	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ē
S2.003	44.886	0.156	287.7	0.036	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ē
S2.004	51.511	0.179	287.8	0.039	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ē
S2.005	51.511	0.181	284.6	0.045	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	ĕ
													_
S1.007	8.597	0.043	200.0	0.037	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	<u> </u>
S1.008	6.842	0.034	201.2	0.085	0.00		0.0	0.035	3 \=/	500	1:3 S	wale	Ō

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S1.000	50.00	7.11	2.886	0.034		0.0	0.0	0.0	0.35	50.0	4.6	
S1.001	50.00	9.22	2.738	0.054		0.0	0.0	0.0	0.35	50.0	7.3	
S1.002	50.00	11.33	2.590	0.072		0.0	0.0	0.0	0.35	50.0	9.7	
S1.003	50.00	13.44	2.441	0.090		0.0	0.0	0.0	0.35	50.0	12.2	
S1.004	50.00	15.88	2.293	0.110		0.0	0.0	0.0	0.35	50.1	14.9	
S1.005	50.00	18.32	2.122	0.134		0.0	0.0	0.0	0.35	50.1	18.1	
S1.006	50.00	19.18	1.951	0.156		0.0	0.0	0.0	0.29	20.8«	21.1	
S2.000	50.00	7.08	2.886	0.044		0.0	0.0	0.0	0.36	51.1	5.9	
S2.001	50.00	9.17	2.730	0.080		0.0	0.0	0.0	0.36	51.1	10.9	
S2.002	50.00	11.25	2.573	0.116		0.0	0.0	0.0	0.36	51.1	15.7	
S2.003	50.00	13.34	2.417	0.152		0.0	0.0	0.0	0.36	51.1	20.6	
S2.004	50.00	15.73	2.260	0.191		0.0	0.0	0.0	0.36	51.1	25.8	
S2.005	50.00	18.11	2.081	0.236		0.0	0.0	0.0	0.36	51.4	32.0	
S1.007	50.00	19.51	1.900	0.429		0.0	0.0	0.0	0.43	61.3	58.1	
S1.008	50.00	19.78	1.057	0.513		0.0	0.0	0.0	0.43	61.2«	69.5	

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 9

Pipe	PIMP	PIMP		PIMP	Gross	Imp.	Pipe Total	
Number	Type	Name		(%)	Area (ha)	Area (ha)	(ha)	
1.000	Classification		Road	7.5	0.034	0.025	0.025	
	Classification		Grass	30	0.029	0.009	0.034	
1.001	Classification		Road	75	0.015	0.012	0.012	
	Classification		Grass	30	0.027	0.008	0.019	
1.002	Classification		Road	75	0.014	0.011	0.011	
	Classification		Grass	30	0.026	0.008	0.018	
1.003	Classification		Road	75	0.014	0.011	0.011	
	Classification		Grass	30	0.025	0.008	0.018	
1.004	Classification		Road	75	0.014	0.010	0.010	
	Classification		Grass	30	0.033	0.010	0.020	
1.005	Classification		Road	75	0.017	0.013	0.013	
	Classification		Grass	30	0.035	0.011	0.023	
1.006	Classification		Road	75	0.029	0.022	0.022	
2.000	Classification		Road	75	0.032	0.024	0.024	
	Classification		Grass	30	0.013	0.004	0.028	
	Classification		Road	75	0.010	0.007	0.035	
	Classification		Grass	30	0.029	0.009	0.044	
2.001	Classification		Road	75	0.015	0.011	0.011	
	Classification		Grass	30	0.022	0.007	0.017	
	Classification		Road	75	0.013	0.010	0.027	
	Classification		Grass	30	0.031	0.009	0.037	
2.002	Classification		Road	75	0.014	0.011	0.011	
	${\tt Classification}$		Grass	30	0.021	0.006	0.017	
	${\tt Classification}$		Road	75	0.013	0.010	0.027	
	${\tt Classification}$		Grass	30	0.029	0.009	0.035	
2.003	Classification		Road	75	0.014	0.011	0.011	
	Classification		Grass	30	0.021	0.006	0.017	
	Classification		Road	75	0.013	0.010	0.027	
	Classification		Grass	30	0.031	0.009	0.036	
2.004	Classification		Road	75	0.014	0.011	0.011	
	Classification		Grass	30	0.022	0.006	0.017	
	Classification		Road	75	0.013	0.010	0.027	
	Classification		Grass	30	0.039	0.012	0.039	
2.005	Classification		Road	75	0.017	0.013	0.013	
	Classification		Grass	30	0.026	0.008	0.021	
	Classification		Road	75	0.016	0.012	0.032	
	Classification		Grass	30	0.044	0.013	0.045	
1.007	Classification		Road	75	0.019	0.015	0.015	
	Classification		Grass	30	0.030	0.009	0.023	
	Classification		Road	75	0.018	0.013	0.037	
1.008	Classification	Detention		100	0.073	0.073	0.073	
	Classification		Grass	30	0.039	0.012	0.085	
					Total	Total	Total	
					1.003	0.513	0.513	

BuroHappold Ltd						
Camden Mill						
Lower Bristol Road						
Bath		Mirro				
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage				
File NLGEP Stormwater Model.MDX	Checked by	Dialilade				
Innovyze	Network 2020.1.3					

Simulation Criteria for Catchment 9

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FEH
Return Period (years)			100
FEH Rainfall Version			1999
Site Location	GB 486200	413400 SE	86200 13400
C (1km)			-0.025
D1 (1km)			0.330
D2 (1km)			0.312
D3 (1km)			0.298
E (1km)			0.300
F (1km)			2.451
Summer Storms			Yes
Winter Storms			Yes
Cv (Summer)			0.750
Cv (Winter)			0.840
Storm Duration (mins)			30

BuroHappold Ltd						
Camden Mill						
Lower Bristol Road						
Bath		Mirro				
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage				
File NLGEP Stormwater Model.MDX	Checked by	Dialilade				
Innovyze	Network 2020.1.3					

Online Controls for Catchment 9

Orifice Manhole: S15, DS/PN: S1.008, Volume (m³): 55.6

Diameter (m) 0.029 Discharge Coefficient 0.600 Invert Level (m) 1.057

BuroHappold Ltd						
Camden Mill						
Lower Bristol Road						
Bath		Micro				
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage				
File NLGEP Stormwater Model.MDX	Checked by	praniada				
Innovyze	Network 2020.1.3	•				

Storage Structures for Catchment 9

Tank or Pond Manhole: S15, DS/PN: S1.008

Invert Level (m) 1.057

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 519.0 0.800 730.9

BuroHappold Ltd						
Camden Mill						
Lower Bristol Road						
Bath		Micro				
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage				
File NLGEP Stormwater Model.MDX	Checked by	Dialilade				
Innovyze	Network 2020.1.3					

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

				_						
Rainfall Model										
FEH Rainfall Version					1999					
Site Location	GB	486200	413400	SE	86200 13400					
C (1km)					-0.025					
D1 (1km)					0.330					
D2 (1km)					0.312					
D3 (1km)					0.298					
E (1km)					0.300					
F (1km)					2.451					
Cv (Summer)					0.750					
Cv (Winter)					0.840					

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 40, 40

PN	US/MH Name	S	Storm		Climate Change		t (X) narge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)		
S1.000	S1	15	Winter	1	+0%						2.927		
S1.001	S2	15	Winter	1	+0%						2.788		
S1.002	S2	15	Winter	1	+0%						2.646		
S1.003	S4	15	Winter	1	+0%						2.502		
S1.004	S2	15	Winter	1	+0%						2.358		
S1.005	S4	15	Winter	1	+0%						2.197		
S1.006	s3	30	Winter	1	+0%	30/15	Summer				2.095		
S2.000	S4	15	Winter	1	+0%						2.932		
S2.001	S8	15	Winter	1	+0%						2.790		
S2.002	S6	15	Winter	1	+0%						2.642		
S2.003	S11	15	Winter	1	+0%						2.494		
	©1982-2020 Innovyze												

	BuroHappold Ltd	Page 7	
	Camden Mill		
	Lower Bristol Road		
	Bath		Micro
ı	Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
	File NLGEP Stormwater Model.MDX	Checked by	Dialilade
İ	Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 9}}$

	US/MH	Surcharged Depth		Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	-0.309	0.000	0.01			4.3	OK	
S1.001	S2	-0.514	0.000	0.01			6.2	OK	
S1.002	S2	-0.698	0.000	0.00			7.6	OK	
S1.003	S4	-0.837	0.000	0.00			8.8	OK	
S1.004	S2	-0.856	0.000	0.00			9.8	OK	
S1.005	S4	-1.063	0.000	0.00			10.5	OK	
S1.006	s3	-0.156	0.000	0.47			9.7	OK*	
S2.000	S4	-0.304	0.000	0.02			5.5	OK	
S2.001	S8	-0.435	0.000	0.01			8.9	OK	
S2.002	S6	-0.491	0.000	0.01			11.8	OK	
S2.003	S11	-0.541	0.000	0.01			14.3	OK	

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 9}}$

										Water
	US/MH			Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	St	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S2.004	S5	15	Winter	1	+0%					2.343
S2.005	S 9	15	Winter	1	+0%					2.171
S1.007	S4	15	Winter	1	+0%					2.002
S1.008	S15	1440	Winter	1	+0%					1.276

	Surcharged	Flooded			Half Drain	Pipe		
US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status :	Exceeded
S5	-0.605	0.000	0.01			16.5	OK	
S9	-0.892	0.000	0.01			18.9	OK	
S4	-1.285	0.000	0.00			28.5	OK	
S15	-0.581	0.000	0.00			0.6	OK	
	Name	US/MH Depth Name (m) S5 -0.605 S9 -0.892 S4 -1.285	Name (m) (m³) S5 -0.605 0.000 S9 -0.892 0.000 S4 -1.285 0.000	US/MH Depth (m) Volume (m³) Flow / Cap. S5 -0.605 0.000 0.01 S9 -0.892 0.000 0.01 S4 -1.285 0.000 0.000	US/MH Name Depth (m) Volume (m³) Flow / Overflow (1/s) S5 -0.605 0.000 0.01 S9 -0.892 0.000 0.01 S4 -1.285 0.000 0.00	US/MH Depth Volume Flow / Overflow Time Name (m) (m³) Cap. (1/s) (mins) S5 -0.605 0.000 0.01 S9 -0.892 0.000 0.01 S4 -1.285 0.000 0.00	US/MH Depth Name Volume (m) Flow / Overflow (1/s) Time (1/s) Flow (1/s) S5 -0.605 0.000 0.01 16.5 S9 -0.892 0.000 0.01 18.9 S4 -1.285 0.000 0.00 28.5	US/MH Depth Volume Flow / Overflow Time Flow / (1/s) Status S5 -0.605 0.000 0.01 16.5 OK S9 -0.892 0.000 0.01 18.9 OK S4 -1.285 0.000 0.00 28.5 OK

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

D ' C 11 14 1 1					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

PN	US/MH Name	5	Storm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	30	+40%						2.979
S1.001	S2	15	Winter	30	+40%						2.850
S1.002	S2	15	Winter	30	+40%						2.711
S1.003	S4	15	Winter	30	+40%						2.569
S1.004	S2	15	Winter	30	+40%						2.434
S1.005	S4	15	Winter	30	+40%						2.319
S1.006	s3	15	Winter	30	+40%	30/15	Summer				2.299
S2.000	S4	15	Winter	30	+40%						2.991
S2.001	S8	15	Winter	30	+40%						2.865
S2.002	S6	15	Winter	30	+40%						2.726
S2.003	S11	15	Winter	30	+40%						2.582
					©1982	-2020	Innov	yze			

BuroHappold Ltd		Page 10		
Camden Mill				
Lower Bristol Road				
Bath		Micro		
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage		
File NLGEP Stormwater Model.MDX	Checked by	Dialilade		
Innovyze	Network 2020.1.3			

	PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
	S1.000	S1	-0.257	0.000	0.06			18.7	FLOOD RISK*	
	S1.001	S2	-0.452	0.000	0.03			27.3	OK	
	S1.002	S2	-0.633	0.000	0.02			33.1	OK	
0	s1.003	S4	-0.770	0.000	0.01			37.6	OK	
	S1.004	S2	-0.780	0.000	0.01			41.2	OK	
	S1.005	S4	-0.941	0.000	0.01			41.0	OK	
	S1.006	s3	0.048	0.000	1.49			31.0	SURCHARGED*	
	S2.000	S4	-0.245	0.000	0.08			24.1	FLOOD RISK*	
	S2.001	S8	-0.360	0.000	0.06			40.4	OK	
	S2.002	S6	-0.407	0.000	0.06			52.5	OK	
	s2.003	S11	-0.453	0.000	0.05			61.8	OK	

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	St	torm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S2.004	S5	15	Winter	30	+40%					2.434
S2.005	S9	15	Winter	30	+40%					2.264
S1.007	S4	15	Winter	30	+40%					2.089
S1.008	S15	1440	Winter	30	+40%					1.653

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.004	S5	-0.514	0.000	0.05			69.9	OK	
S2.005	S9	-0.799	0.000	0.02			78.1	OK	
S1.007	S4	-1.198	0.000	0.01			109.6	OK	
S1.008	S15	-0.204	0.000	0.00			1.3	FLOOD RISK*	

BuroHappold Ltd	Page 12	
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

- 7					
Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

Inertia Status

ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

PN	US/MH Name	5	Storm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15	Winter	100	+40%						3.001
S1.001	S2	15	Winter	100	+40%						2.874
S1.002	S2	15	Winter	100	+40%						2.740
S1.003	S4	15	Winter	100	+40%						2.599
S1.004	S2	15	Winter	100	+40%						2.471
S1.005	S4	15	Winter	100	+40%						2.382
S1.006	s3	15	Winter	100	+40%	30/15	Summer				2.370
S2.000	S4	15	Winter	100	+40%						3.015
S2.001	S8	15	Winter	100	+40%						2.897
S2.002	S6	15	Winter	100	+40%						2.762
S2.003	S11	15	Winter	100	+40%						2.621
					©1982	-2020	Innov	yze			

BuroHappold Ltd		Page 13
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.235	0.000	0.09			28.1	FLOOD RISK*	
S1.001	S2	-0.428	0.000	0.04			40.3	OK	
S1.002	S2	-0.604	0.000	0.03			48.1	OK	
S1.003	S4	-0.740	0.000	0.02			54.0	OK	
S1.004	S2	-0.743	0.000	0.02			58.6	OK	
S1.005	S4	-0.878	0.000	0.01			53.9	OK	
S1.006	s3	0.119	0.000	1.90			39.6	SURCHARGED*	
S2.000	S4	-0.221	0.000	0.12			36.2	FLOOD RISK*	
S2.001	S8	-0.328	0.000	0.09			61.5	OK	
S2.002	S6	-0.371	0.000	0.09			80.0	OK	
S2.003	S11	-0.414	0.000	0.08			94.2	OK	

BuroHappold Ltd		Page 14
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 09/09/2021 17:04	Designed by Stefan Gandler	Drainage
File NLGEP Stormwater Model.MDX	Checked by	Dialilade
Innovyze	Network 2020.1.3	

PN	US/MH Name	St	torm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S2.004	S5	15	Winter	100	+40%					2.475
S2.005	S9	15	Winter	100	+40%					2.303
S1.007	S4	15	Winter	100	+40%					2.130
S1.008	S15	1440	Winter	100	+40%					1.820

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S2.004	S5	-0.473	0.000	0.07			106.3	OK	
S2.005	S9	-0.760	0.000	0.03			118.3	OK	
S1.007	S4	-1.157	0.000	0.02			160.7	OK	
S1.008	S15	-0.037	0.000	0.00			1.5	FLOOD RISK*	

BuroHappold Ltd		Page 1
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	,

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Catchment 10

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
S1.000	94.136	0.314	299.8	0.495	5.00		0.0	0.600	0	450	Pipe/Conduit	<u> </u>
S1.001	71.828	0.239	300.5	0.537	0.00		0.0	0.600	0	450	Pipe/Conduit	0
S1.002	19.652	0.066	297.8	0.250	0.00		0.0	0.600	0	450	Pipe/Conduit	<u> </u>
S1.003	11.322	0.023	492.3	0.152	0.00		0.0	0.600	0	150	Pipe/Conduit	<u> </u>
S1.004	2.112	0.004	528.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	<u> </u>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S1.000	50.00	6.34	4.130	0.495		0.0	0.0	0.0	1.17	185.9	67.0	
S1.001	50.00	7.37	3.816	1.033		0.0	0.0	0.0	1.17	185.7	139.8	
S1.002	50.00	7.65	3.577	1.282		0.0	0.0	0.0	1.17	186.6	173.6	
S1.003	50.00	8.07	3.290	1.434		0.0	0.0	0.0	0.45	7.9«	194.1	
S1.004	50.00	8.15	3.267	1.434		0.0	0.0	0.0	0.43	7.6«	194.1	

BuroHappold Ltd		Page 2
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Area Summary for Catchment 10

Pipe PIMP		PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Roof	90	0.426	0.384	0.384
1.000	Classification		30	0.091	0.027	0.411
	Classification		30	0.054	0.016	0.427
	Classification		30	0.086	0.026	0.453
	Classification	Road	75	0.056	0.042	0.495
1.001	Classification	Roof	90	0.360	0.324	0.324
	Classification	Grass	30	0.080	0.024	0.348
	Classification	Grass	30	0.116	0.035	0.383
	Classification	Grass	30	0.076	0.023	0.405
	Classification	Grass	30	0.193	0.058	0.463
	Classification	Road	75	0.099	0.074	0.537
1.002	Classification	Roof	90	0.063	0.056	0.056
	Classification	Roof	90	0.000	0.000	0.057
	Classification	Roof	90	0.001	0.001	0.058
	Classification	Roof	90	0.002	0.002	0.060
	Classification	Roof	90	0.010	0.009	0.069
	Classification	Roof	90	0.010	0.009	0.078
	Classification	Road	75	0.153	0.115	0.193
	Classification	Grass	30	0.027	0.008	0.201
	Classification	Grass	30	0.161	0.048	0.250
1.003	Classification	Roof	90	0.008	0.008	0.008
	Classification	Grass	30	0.169	0.051	0.058
	Classification	Grass	30	0.231	0.069	0.127
	Classification	Grass	30	0.035	0.010	0.138
	Classification	Grass	30	0.046	0.014	0.152
1.004	-	_	100	0.000	0.000	0.000
				Total	Total	Total
				2.553	1.434	1.434

Simulation Criteria for Catchment 10

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
Return Period (years) 100
FEH Rainfall Version 1999
Site Location GB 486200 413400 SE 86200 13400
C (1km) -0.025

BuroHappold Ltd		Page 3
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Synthetic Rainfall Details

D1 (1km) 0.330
D2 (1km) 0.312
D3 (1km) 0.298
E (1km) 0.300
F (1km) 2.451
Summer Storms Yes
Winter Storms Yes
Cv (Summer) 0.750
Cv (Winter) 0.840
Storm Duration (mins) 30

BuroHappold Ltd		Page 4
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

Online Controls for Catchment 10

Orifice Manhole: S2, DS/PN: S1.003, Volume (m³): 3.1

Diameter (m) 0.047 Discharge Coefficient 0.600 Invert Level (m) 3.290

BuroHappold Ltd		Page 5
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	prairiarie.
Innovyze	Network 2020.1.3	

Storage Structures for Catchment 10

Cellular Storage Manhole: S2, DS/PN: S1.003

Invert Level (m) 3.290 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	23	34.0			0.0	0.	611		0.0			0.0
0.6	510	23	34.0			0.0							

BuroHappold Ltd		Page 6
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 10}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfa	all					FEH	
FEH Rainfall	l Ve	ersion					1999
Site	Loc	cation	GB	486200	413400	SE	86200 13400
	С	(1km)					-0.025
	D1	(1km)					0.330
	D2	(1km)					0.312
	D3	(1km)					0.298
	E	(1km)					0.300
	F	(1km)					2.451
Cv	Cv (Summer)						0.750
Cv	iW)	nter)					0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

									Water	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	
S1.000	S1	15 Winter	1	+0%					4.311	
S1.001	S2	15 Winter	1	+0%					4.066	
S1.002	s3	15 Winter	1	+0%					3.866	
S1.003	S2	1440 Winter	1	+0%	1/1440 Winter				3.449	
S1.004	S5	1440 Winter	1	+0%					3.299	
										1

BuroHappold Ltd		Page 7		
Camden Mill				
Lower Bristol Road				
Bath		Micro		
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage		
File 211111 - NLGEP Stormwat	Checked by	Dialilage		
Innovyze	Network 2020.1.3			

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment 10}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	-0.269	0.000	0.32			58.7	FLOOD RISK*	
S1.001	S2	-0.200	0.000	0.58			107.3	OK*	
S1.002	S3	-0.161	0.000	0.73			124.1	OK*	
S1.003	S2	0.009	0.000	0.14			1.0	SURCHARGED*	
S1.004	S5	-0.118	0.000	0.09			1.0	OK*	

BuroHappold Ltd		Page 8
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Drainage
Innovvze	Network 2020.1.3	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Catchment } 10}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FEH
FEH Rainfall Version		1999
Site Location	GB 486200 4134	100 SE 86200 13400
C (1km)		-0.025
D1 (1km)		0.330
D2 (1km)		0.312
D3 (1km)		0.298
E (1km)		0.300
F (1km)		2.451
Cv (Summer)		0.750
Cv (Winter)		0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

										water		
	US/MH		US/MH Return Cl			Climate	climate First (X) First (Y) First (Z) Overflo					
PN	Name	St	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)		
S1.000	S1	15	Summer	30	+40%					4.580		
S1.001	S2	15	Summer	30	+40%					4.266		
S1.002	S3	15	Summer	30	+40%					4.027		
S1.003	S2	1440	Winter	30	+40%	1/1440 Winter				3.755		
S1.004	S5	1440	Winter	30	+40%					3.318		
											1	

BuroHappold Ltd		Page 9
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Catchment } \underline{10}}$

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	0.000	0.000	0.84			156.5	FLOOD RISK*	
S1.001	S2	0.000	0.000	1.78			331.2	SURCHARGED*	
S1.002	s3	0.000	0.000	2.27			383.2	SURCHARGED*	
S1.003	S2	0.315	0.000	0.40			2.7	SURCHARGED*	
S1.004	S5	-0.099	0.000	0.25			2.7	OK*	

BuroHappold Ltd				
Camden Mill				
Lower Bristol Road				
Bath		Micro		
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage		
File 211111 - NLGEP Stormwat	Checked by	Dialilade		
Innovyze	Network 2020.1.3			

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank }}{1) \text{ for Catchment } 10}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	-				FEH
FEH Rainfall Version					1999
Site Location	GB	486200	413400	SE	86200 13400
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.312
D3 (1km)					0.298
E (1km)					0.300
F (1km)					2.451
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	15 Sumr	ner 100	+40%					4.580
S1.001	S2	15 Sumr	ner 100	+40%					4.266
S1.002	s3	15 Sumr	ner 100	+40%					4.027
S1.003	S2	1440 Wint	er 100	+40%	1/1440 Winter				3.900
S1.004	S5	1440 Wint	er 100	+40%					3.323

BuroHappold Ltd		Page 11
Camden Mill		
Lower Bristol Road		
Bath		Micro
Date 12/11/2021 17:07	Designed by Stefan Gandler	Drainage
File 211111 - NLGEP Stormwat	Checked by	Dialilade
Innovyze	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank }}{\text{1) for Catchment 10}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.000	0.000	1.11			206.9	FLOOD RISK*	
S1.001	S2	0.000	0.000	2.45			454.2	SURCHARGED*	
S1.002	s3	0.000	0.000	3.12			528.3	SURCHARGED*	
S1.003	S2	0.460	0.000	0.47			3.2	SURCHARGED*	
S1.004	S5	-0.094	0.000	0.30			3.2	OK*	

Francisco Rodriguez Buro Happold Limited 3 Wellington Place Leeds LS1 4AP UK